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1 Introduction - Notations

A system is considered, which evolves in time. At time ¢, its state is described by its
"physical" state denoted by /, and by some "environmental" conditions, such as
temperature, pressure or so on, and denoted by X,. The "physical" state /, is assumed
to take its values in a finite state-space £ whereas the "environmental" conditions X;
take their values in R?. For i, j in E, the transition rate at time ¢ from state i to state j
depends on the value (say x) of the "environmental" conditions X, and is denoted by
a(i, j, x). The evolution of the environmental conditions is described by a set of
differential equations, which depends on the state of the item. More precisely, given
that the system is in state [, = i for all te [a, b], then X, fulfils the following

equation: % =i, x,) for all ¢ € [a, b], where v is an application from E x R’ to
t

R?. This is the general context of dynamic reliability.

In such a field, the process (X)) is usually assumed to be continuous so that no
jump is allowed for the environmental conditions. In the present paper, this
assumption of continuity is relaxed and the process (X;) may here jump
simultaneously with the process (/;). More precisely, when the process (/,) jumps
from state i to state j, we assume that the process (X,) belongs to [y, y+dy[ with
probability u(i, j, x)(dy) at the jump time, given that the environmental conditions
were x just before the jump. In case u(i, j, x)(dy) = &, (dy) (for all i, j, x), the process
(X)) is continuous and our model then meets with the usual one. Our model however
includes a lot of other interesting cases. For instance, suppose that there is a single
environmental condition with values in R, and suppose that v = 1. Then, if u(i, j,

x)(dy) = & (dy) for all i, j, x, the process (/) is a semi-Markov process. If u(i, j,
x)(dy) = &, (dy) for all i, j, x, then X, = X, + ¢t and the process (/,) is a non-
homogenous Markov process. More generally, it can be shown that interacting semi-
Markov processes are particular cases of our model: for d interacting semi-Markov
processes, the environmental conditions have to be taken in R?. and we may then
choose (i, j, X)(dy) = Sui, ate-1ox+1), <@ (dv) for some suitable k& depending on i
and ;.



Our goal here is to propose a new numerical method to compute the distribution
7(£)(i, dx) of the process (/,, X,) at time ¢. Let us recall that such a distribution is
analytically calculable in only very simple cases, so that generally only numerical
computations are reachable. One of the most up-date methods for such numerical
computations appeals to Monte-Carlo simulation where the authority of P.E. Labeau
in the dynamic reliability field is well-known. We here propose a new method,
based on a numerical scheme which converges towards the distribution w(¢)(i, dx).
With that aim, we first characterize the distribution 7(¢)(i, dx) as the single solution
of a set of integro-differential equations (the Chapman-Kolmogorov equations) and
we then derive a numerical scheme based on the finite volumes method. The
singleness of the solution of the Chapman-Kolmogorov equations is here crucial to
show the convergence of the numerical scheme towards the right solution. Finally,
the numerical scheme is tested on an analytical benchmark showing the accuracy of
the method.

Note that the efficiency of such an algorithm had already been tested in the
particular case of semi-Markov processes in [1].

2 The Theoretical Results

The following theorem characterizes the distribution z(f)(i, dx) as the single solution
of a set of integro-differential equations (the Chapman-Kolmogorov equations). Its
proof may be found in [2].

Theorem 1: Let m)(i, dx) be the initial distribution of the process (I, , X,). Then,
under some technical assumptions, the distribution n(f)(i, dx) is the single solution
continuous in t of the following equations:
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for all h continuously differentiable with a compact support.

We derive the following numerical scheme: for At > 0, the time-space R is
partitioned into R, = J
partitioned into what is called an admissible mesh M, namely a partition of R’
(K)k < 1 such that m x = [K dx > 0 for all K € M and &y, = supgcy diam(K) < o.

[nAt,(n+ 1)Af. Similarly, the space-state RY is

For each Ar > 0 and each admissible mesh M, we construct a distribution
P(i, x)dx such that P(i, x)=p,(i, K) is constant for all (¢ x) such that
n At <t<(n+1) At and such that x € K, where K € M.



For n = 0, we take p, (i,K) such that my poli, K)= "K 7o (i, dx)> where 7y(i, dx) is
the initial distribution of the process (/,, X)).
The sequence (p,(i,K)),-n 1s then recursively constructed through the

following:

. U(i,n, K, At) U(j,n,L,At)
n b = . A A i ,KL
mk pa+1(1,K) mK—AtB(l,K)+mK t;g (ij )AtB(] L) +m1

with
A KL = [ aGiw) [ uG.iy)dody
B(i,K) = ZJ a(i,j,x)dx

JeE
UG, n,K,At) = jK Po(i, 2(i,x, ~AD)J(, x,~A)dx
where P,(i,x) = p,(i,K) forall x € K,
g(i,xo,t) is the single solution of % = v(i,x) such that g(i,x0,0) = xo,
and J(i,xo,?) is the jacobian associated to thechange of variable x = g(i,xo,?)

It may be noted that this scheme is conservative, in the sense that
z me p, (i, K)=1 for all n € N. This allows us to check the limitation of the

icE KeM
domain when implementing the scheme.

Theorem 2: Under some technical assumptions, the distribution PJ(i, x) dx
associated to At > 0 and an admissible mesh M weakly converges towards the
distribution n(f)(i, dx) of the process (I,, X;) when At, hy, and hy, /At tend to 0.

The proof of this result may be found in [3]. The last assumption (/,, /At tends to
0) is not always needed and Theorem 2 is true without such an assumption in
several important cases (such as interacting semi-Markov processes for instance or
for the analytical benchmark of next section).

3 An analytical benchmark

The numerical scheme presented in the previous section has been tested on different
simple examples. Due to lack of room, we have chosen to focus here on one single
analytical benchmark, which allows us to test different features of our scheme. This
benchmark is taken from the PhD thesis of P.E. Labeau [4].

The studied benchmark is the following: a system is considered with three
possible "physical" states: E = {1, 2, 3}. The system changes of physical state
according to the following scheme: 1 — 2 — 3 where a(/,2, x) = i, and a(2,3, x) =



A, are constant.
The "environmental" conditions X, take their values in R? and are assumed to be
continuous, namely such that u(i, j, (x,y))(dx"dy") = &, (dx', dy") (for all i, j, (x,)).
Beside, X; = (x;, y, ) fulfils:

A S for i=1,2,3

dy
—L=bhx +c,
dt vt :yr

where a,>a,>as>cs, a; + ¢ a + ¢ Xg 0
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Under such conditions, one may check that z(¢)({, dx, dy) is supported by a point
of R’ (it is a Dirac measure), that 7(£)(2, dx, dy) is supported by a line of R’ and that
7()(3, dx, dy) admit a density z(#)(3, x, y) towards Lebesgue measure. Analytical
expressions are available for all of those distributions and may be found in [4]. We
here focus on 7(¢)(3, x, y), which is the most interesting case.

Following [4], we take the following numerical values:

a1:1.5 a2:1 a3:0.75 b1:1 b2:075 b3:0
C1:0.5 C2:0.25 C3:0.5 X():yOZI )\.1:0.5 )\.2:0.3

As for the set up of our numerical scheme, we take here the most simple mesh
associated to R’ and we set R? = U ezl (m + Dh[x[nh,(n + 1AL with b = At.
Also, to program our scheme, we have to restrict ourselves to a domain in which the
support of 7(¢)(3, x, y) is expected to be included. Beside, the computing time is all
the more reduced that this domain is small. Due to that, we perform consecutive
executions of our program: we first take a rough step and a large domain. We then
reduce the step of the mesh and select the area for the next execution. (At each step,
approximated conservativeness of the mass is checked). Such successive restrictions
of the domain are illustrated in Figures 1, 2 and 3 where the successive domains are
displayed for 7 = 5x10°, h = 3,13x10™ and 4 = 3,9x10”. The black triangle stands
for the real support of 7(¢)(3, x, y).
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Figures 1, 2 & 3. The support of the approximate solution of z(£)(3, x, y) for h = 5x107,



h=3,13x10"*and & = 3,9x10 and the exact support of 7(£)(3, x, y) (black triangle), t = 0.1
We now compare the full density z(¢)(i, x, y) as provided by our numerical
scheme for the last step # = 3,9x10” (Figure 4) with the exact density (Figure 5).
We also compare it with the method which gives the best results in [4] (Figure 6),
where P.E. Labeau builds the full distribution by Monte-Carlo simulation step by
step, taking into account both of the marginal distributions and of the support of the
full distribution (cf [4] Chapter 4).
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Figures 4 & 5. Approximate solution for z(¢)(3, x, y) with our numerical scheme
for h = 3,9x107 (left) and exact distribution (right) for 7 =0.1

Figure 6. Approximate solution for z(¢)(3, x, y) with Monte-Carlo simulation step by step,
PE Labeau [4] page 153 for t=0.1

For i = 3,9x10”, we can see that the numerical scheme provides us with quite
good an approximation for 7(¢)(3, x, y) which seems to be still better than the results
obtained by PE Labeau in [4].

In order to complete the comparison with the method proposed in [4], we now
plot the marginal densities z(¢)(3, x) and #(¢)(3, ), according to the analytical results
(plain) and according to our numerical scheme (dashed) in Figures 7-8. The dashed
plots are nearly indistinguishable from the plain plots. We also give the results



obtained by PE Labeau in [4] in Figures 9-10, which are very good too, but however
a little more rugged than ours, as for the full distribution.
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Figure 7 & 8. Exact marginal distributions z(¢)(3, x) and #(#)(3, y) for t = 0.1 (plain) and
approximate solutions with our numerical scheme for # = 3,9x107 (dashed)
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Figure 9 & 10. Exact marginal distributions z(#)(3, x) and z(#)(3, y) for = 0.1 (plain) and
approximate solutions with Monte-Carlo simulations (dashed)

As a conclusion, the results provided by the numerical scheme on this small
analytical benchmark (and on others) are very good. The computing time is about
three quarters of an hour on a modern PC to get Figure 4. It then seems to be a
good alternative to Monte-Carlo simulation, at least when the dimension of the
environmental condition is small (a few units).
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