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1 Introduction - Notations 

A system is considered, which evolves in time. At time t, its state is described by its
"physical" state denoted by It and by some "environmental" conditions, such as
temperature, pressure or so on, and denoted by Xt. The "physical" state It is assumed
to take its values in a finite state-space E whereas the "environmental" conditions Xt

take their values in Rd. For i, j in E, the transition rate at time t from state i to state j
depends on the value (say x) of the "environmental" conditions Xt and is denoted by
a(i, j, x). The evolution of the environmental conditions is described by a set of 
differential equations, which depends on the state of the item. More precisely, given
that the system is in state It = i for all t [a, b], then Xt fulfils the following
equation:
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, for all t [a, b], where v is an application from E Rd to

Rd. This is the general context of dynamic reliability.

In such a field, the process (Xt) is usually assumed to be continuous so that no 
jump is allowed for the environmental conditions. In the present paper, this
assumption of continuity is relaxed and the process (Xt) may here jump
simultaneously with the process (It). More precisely, when the process (It) jumps
from state i to state j, we assume that the process (Xt) belongs to [y, y+dy[ with
probability µ(i, j, x)(dy) at the jump time, given that the environmental conditions
were x just before the jump. In case µ(i, j, x)(dy) = x (dy) (for all i, j, x), the process 
(Xt) is continuous and our model then meets with the usual one. Our model however 
includes a lot of other interesting cases. For instance, suppose that there is a single
environmental condition with values in R+ and suppose that v 1. Then, if µ(i, j, 
x)(dy) = 0 (dy) for all i, j, x, the process (It) is a semi-Markov process. If µ(i, j, 
x)(dy) = x (dy) for all i, j, x, then Xt = X0 + t and the process (It) is a non-
homogenous Markov process. More generally, it can be shown that interacting semi-
Markov processes are particular cases of our model: for d interacting semi-Markov
processes, the environmental conditions have to be taken in Rd

+ and we may then
choose µ(i, j, x)(dy) = x(1),…,x(k-1),0,x(k+1),…,x(d) (dy) for some suitable k depending on i
and j.



Our goal here is to propose a new numerical method to compute the distribution
(t)(i, dx) of the process (It , Xt) at time t. Let us recall that such a distribution is

analytically calculable in only very simple cases, so that generally only numerical
computations are reachable. One of the most up-date methods for such numerical
computations appeals to Monte-Carlo simulation where the authority of P.E. Labeau
in the dynamic reliability field is well-known. We here propose a new method,
based on a numerical scheme which converges towards the distribution (t)(i, dx).
With that aim, we first characterize the distribution (t)(i, dx) as the single solution 
of a set of integro-differential equations (the Chapman-Kolmogorov equations) and 
we then derive a numerical scheme based on the finite volumes method. The 
singleness of the solution of the Chapman-Kolmogorov equations is here crucial to
show the convergence of the numerical scheme towards the right solution. Finally,
the numerical scheme is tested on an analytical benchmark showing the accuracy of 
the method.

Note that the efficiency of such an algorithm had already been tested in the
particular case of semi-Markov processes in [1].

2 The Theoretical Results 

The following theorem characterizes the distribution (t)(i, dx) as the single solution 
of a set of integro-differential equations (the Chapman-Kolmogorov equations). Its
proof may be found in [2].

Theorem 1: Let 0(i, dx) be the initial distribution of the process (It , Xt). Then, 
under some technical assumptions, the distribution (t)(i, dx) is the single solution
continuous in t of the following equations:
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for all h continuously differentiable with a compact support. 

R n N n t, n 1 t .
We derive the following numerical scheme: for t > 0, the time-space R+ is 

partitioned into imilarly, the space-state Rd is
partitioned into what is called an admissible mesh M, namely a partition of Rd

(K)K M such that m K K dx > 0 for all K M and hM = supK M diam(K) < .

S

For each t > 0 and each admissible mesh M, we construct a distribution
Pt(i, x)dx such that Pt(i, x) pn(i, K) is constant for all (t, x) such that 
n t t <(n +1) t and such that x K, where K M.
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where Pn i,x pn i,K for all x K,
g i,x0, t is the single solution of dx

dt v i,x such that g i,x0,0 x0,

and J i,x0, t is the jacobian associated to thechange of variable x g i,x0, t

For n = 0, we take p0 (i,K) such that , where 
K 00K dxiKipm ,,

It may be noted that this scheme is conservative, in the sense that

0(i, dx) is 

the initial distribution of the process (It , Xt).

The sequence (pn(i,K))n N is then recursively constructed through the
following:

1,
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the analytical benchmark of next section).

3 An analytical benchmark

for all n N. This allows us to check the limitation of the

enting the scheme.

heorem 2: Under some technical assumptions, the distribution Pt(i, x) dx 
ssociated to t > 0 and an admissible mesh M weakly converges towards the

distribution (t)(i, dx) of the process (It , Xt) when t, hM and hM / t tend to 0.

The proof of this result may be found in [3]. The last assumption (hM / t tends to
) is not always needed and Theorem 2 is true without such an assumption in

several important cases (such as interacting semi-Markov processes for instance or
for
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e system changes of physical state 
according to the following scheme: 1 2 3 where a(1,2, x) = 1 and a(2,3, x) = 

d
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The numerical scheme presented in the previous section has been tested on different
simple examples. Due to lack of room, we have chosen to focus here on one s

lytical benchmark, which allows us to test different features of our scheme. This
benchmark is taken from the PhD thesis of P.E. Labeau [4].

The studied benchmark is the following: a system is considered with three
possible "physical" states: E = {1, 2, 3}. Th



2 are constant.

their values in R2 and are assumed to be 
ontinuous, namely such that µ(i, j, (x,y))(dx',dy') = (x,y) (dx', dy') (for all i, j, (x,y)).

The "environmental" conditions Xt take
c

Beside, Xt = (xt , yt ) fulfils:
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where a1 > a2 > a3 > c3, a1 c1, a2 c2 , x0 0

and 10 by 32 bb
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Under such conditions, one may check that (t)(1, dx, dy) is supported by a point

R2
m,n Z mh, m 1 h nh, n 1 hociated to R2 and we set with h = t.

Also, to program our scheme, we have to restrict ourselves to a domain in which the
support of (t)(3, x, y) is expected to be included. Beside, the computing time is all
the more reduced that this domain is small. Due to that, we perform consecutive
executions of our program: we first take a rough step and a la

.

of t (t)(2, dx, dy) is supported by a line of R2 and that
(t)(3, dx, dy) admit a density (t)(3, x, y) towards Lebesgue measure. Analytical 

expressions are available for all of those distributions and ma n [4]. We
here focus on (t)(3, x, y), which is the most interesting case.

Following [4], we take the following numerical values:

b1 = 1 b2 = 0.75 b3 = 0 
c1 = 0.5 c2 = 0.25 c = 0.5 x0 = y0 = 1 1 = 0.5 2 = 0.3 

As for the set up of our numerical scheme, we take here the most simple mesh
ass

rge domain. We then
reduce the step of the mesh and select the area for the next execution. (At each step, 
app h successive restrictions

are
= 5 h = he a s

for the real support of (t)(3, x, y).

R2 (it is a Dirac measure), tha

a1 = 1.5 a2 = 1 a3 = 0.75 

roximated conservativeness of the mass is checked). Suc
of the domain are illustrated in Figures 1, 2 and 3 where the successive domains
displayed for h 10-3, h = 3,13 10-4 and 3,9 10-5. T black tri ngle stand

-3Figures 1, 2 & 3. The support of the approximate solution of (t)(3, x, y) for h = 5 10 ,



h = 3,13 10-4 and h = 3,9 10-5 and the exact support of (t)(3, x, y) (black triangle), t = 0.1 
We now compare the full density (t)(i, x, y) as provided by our numerical

scheme for the last step h = 3,9 10-5 (Figure 4) with the exact density (Figure 5). 
We also compare it with the method which gives the best results in [4] (Figure 6), 
where P.E. Labeau builds the full distribution by Monte-Carlo simulation step by
step, taking into account both of the marginal distributions and of the support of the
full distribution (cf [4] Chapter 4). 

Figures 4 & 5. Approximate solution for (t)(3, x, y) with our numerical scheme
for h = 3,9 10-5 (left) and exact distribution (right) for t = 0.1 

Figure 6. Approximate solution for (t)(3, x, y) with Monte-Carlo simulation step by step,
PE Labeau [4] page 153 for t = 0.1 

For h = 3,9 10-5, we can see that the numerical scheme provides us with quite
good an approximation for (t)(3, x, y) which seems to be still better than the results
obtained by PE Labeau in [4].

In order to complete the comparison with the method proposed in [4], we now
plot the marginal densities (t)(3, x) and (t)(3, y), according to the analytical results 
(plain) and according to our numerical scheme (dashed) in Figures 7-8. The dashed 
plots are nearly indistinguishable from the plain plots. We also give the results



obtained by PE Labeau in [4] in Figures 9-10, which are very good too, but however
a little more rugged than ours, as for the full distribution.

it

Figure 7 & 8. Exact marg , y) for t = 0.1 (plain) and 
approximate solutions with our numerical scheme for h = 3,9 10-5 (dashed) 

inal distributions (t)(3, x) and (t)(3

Figure 9 & 10. Exact marginal distributions (t)(3, x) and (t)(3, y) for t = 0.1 (plain) and 
approximate solutions with Monte-Carlo simulations (dashed) 

As a conclusion, the results provided by the numerical scheme on this small
analytical benchmark (and on others) are very good. The computing time is about
three quarters of an hour on a “modern” PC to get Figure 4. It then seems to be a 
good alternative to Monte-Carlo simulation, at least when the dimension of the
environmental condition is small (a few units).
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authorization of P. E. Labeau and the authors warmly thank him for that.
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