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Abstract: Renewal processes have been widely used in reliability, to describe successive failure times
of systems submitted to perfect and instantaneous maintenance actions. In case of imperfect mainte-
nance, different models have been developed to take this feature into account, among which geometric
processes introduced by [Y. Lam, The Geometric Process and its Applications. World Scientific, 2007].
In such a model, successive lifetimes are independent and identically distributed up to a multiplicative
scale parameter a > 0, in a geometric fashion. A drawback in Lam’s setting is the fast increase or
decrease of the successive periods, induced by the geometric progression. We here envision a more
flexible progression, where the multiplicative scaling factor is not necessarily a geometric progression
any more. The corresponding counting process is here named Extended Geometric Process (EGP).

As a first step in the study of an EGP, we consider its semiparametric estimation based on the
observation of the n first gap times. We start with the estimation of the Euclidean parameter a
following the regression method proposed by Lam. We next proceed to the estimation of the unknown
distribution of the underlying renewal process. Several consistency results, including convergence
rates, are obtained.

We next turn to applications of EGPs to reliability, where successive arrival times stand for failure
(and instantaneous maintenance) times. A first quantity of interest is the pseudo-renewal function
associated to an EGP, which is proved to fulfill a pseudo-renewal equation. When the system is
deteriorating (case a < 1), a preventive renewal policy is proposed: as soon as a lifetime is observed to
be too short, under a predefined threshold, the system is considered as too deteriorated and replaced
by a new one. This renewal policy is assessed through a cost function, on an infinite horizon time.
Numerical experiments illustrate the study.
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1. INTRODUCTION

From several years, many attention has been paid to the modeling of recurrent event data. Application
fields are various and include reliability, medicine, insurance, etc., see [7] for an overview of models
and their applications. In reliability, the events of interest typically are successive failures of a system
submitted to instantaneous repair. In case of perfect repairs (As Good As New repairs), the underlying
process describing the system evolution is a renewal process, which has been widely used in reliability,
see [2]. In case of imperfect repair, the successive inter-failure times may however become shorter
and shorter, leading to some (stochastically) decreasing sequence of lifetimes. In case of improving
systems such as software releases e.g., inter-failure times may also be increasing. This has lead to the
development of different models taking into account such features, among which geometric processes
introduced by [14]. In such a model, successive lifetimes X1, X2, . . . , Xn, . . . are independent
with identical distributions up to a multiplicative scale parameter: Xn = an−1Yn where (Yn)n≥1 is
a sequence of independent and identically distributed random variables (the interarrival times of a
renewal process). According to a ≥ 1 or 0 < a < 1, the sequence (Xn)n≥1 may be (stochastically)
non-decreasing or non-increasing. A drawback in Lam’s setting is the fast increase or decrease of
the successive periods, induced by a geometric progression. We here envision a more general scaling
factor, where Xn is of the shape Xn = abnYn and (bn)n≥1 stands for a non decreasing sequence. This
allows for more flexibility in the progression of the Xn’s. The corresponding counting process is named
Extended Geometric Process (EGP) in the sequel.

As a first step in the study of an EGP, we consider its semiparametric estimation based on the
observation of the n first gap times. The sequence (bn)n≥1 is assumed to be known and we start with



the estimation of the Euclidean parameter a. Following the regression method proposed by [12], several
consistency results are obtained for the estimate â, including convergence rates. We next proceed to
the estimation of the unknown distribution of the underlying renewal process. The estimation method
relies on a pseudo version (Ỹn)n≥1 of the points (Yn)n≥1 of the underlying renewal process, which is
obtained by setting Ỹn = â−bnXn. Again, several convergence results are obtained, such as strong
uniform consistency.

We next turn to applications of EGPs to reliability, with the previous interpretation of arrivals of an
EGP as successive failure times. A first quantity of interest then is the mean number of instantaneous
repairs on some time interval [0, t], which corresponds to the pseudo-renewal function associated to
an EGP, seen as some pseudo-renewal process. The pseudo-renewal function is proved to fulfill a
pseudo-renewal equation, and tools are provided for its numerical solving. In case a < 1, the system
is aging and requires some action to prevent successive lifetimes to become shorter and shorter. In
that case, a replacement policy is proposed: as soon as a lifetime is observed to be too short - bellow
a predefined threshold -, the system is considered as too degraded and it is replaced by a new one. In
case a ≥ 1, the system is improving at each corrective action and no replacement policy is required.
In case a < 1, the replacement policy is assessed through a cost function, which is provided in full
form. The replacement policy proposed here is an alternative to the one considered by [14], where the
failure times are modelled by a geometric process and where the system is replaced by a new one once
it has been repaired N times (with N fixed). Non negligible repair times are also considered by [14]
(modelled by another geometric process), which we do not envision here.

This paper is organized as follows: Section 2 is devoted to the semiparametric estimation of an
EGP and applications to reliability are developed in Section 3. Both of these sections include numerical
experiments, to illustrate the results. Concluding remarks end this paper in Section 4.

2. ESTIMATION OF EXTENDED GEOMETRIC PROCESSES

2.1. The model

Let (Tn)n≥0 stand for the successive failure times of a system, with 0 = T0 < T1 < · · · < Tn < · · · We
set Xn = Tn−Tn−1 for n ≥ 1 and we assume that (Xn)n≥1 satisfies Xn = abnYn, where (Yn)n≥1 are the
interarrival times of a renewal process (RP), a ∈ (0,+∞) and (bn)n≥1 is a non decreasing sequence of
non negative real numbers such that b1 = 0 and bn tends to infinity when n goes to infinity. To prevent
trivialities, Y1 is assumed to be non zero: P (Y1 > 0) > 0. This setting enlarges classical geometric
processes, for which bn = n− 1 and Xn = an−1Yn (all n ≥ 1), see [14].

Though parameter bn could be only known up to an euclidean parameter, the sequence (bn)n≥1 is
here assumed to be fully known. Unknown parameters hence are a ∈ (0,+∞) and F the cumulative
distribution function (c.d.f.) of the underlying RP. As a consequence, it is a semiparametric model.

2.2. The estimation method

Assuming that T1 < · · · < Tn are observed, we consider the problem of estimating a and F . As for
the euclidian parameter a, we follow the same estimation method considered by Lam in a series of
papers, see [12—14], which is based on a classical regression: writing Zn = logXn for n ≥ 1, we have
Zn = bnβ +µ+ en where β = log a, µ = E[log Y1] and en = log Yn−µ are independent and identically
distributed (i.i.d.) centered errors. Parameters µ and β are next estimated by a least square method:

(µ̂n, β̂n) = arg min
µ,β

n∑
k=1

(Zk − βbk − µ)2 ,

which provides

β̂n =
n−1

∑n
k=1 bkZk − n−2

∑n
k=1 Zk

∑n
i=1 bi

n−1
∑n

k=1 b
2
k − (n−1

∑n
k=1 bk)

2 and µ̂n = Z̄n − β̂nb̄n,

where b̄n = (b1+ · · ·+ bn)/n and Z̄n = (Z1+ · · ·+Zn)/n. The euclidian parameter a is then estimated
by ân = exp(β̂n).



Starting from ân, we next construct a pseudo version (Ỹn)n≥1 of the inter-arrival times (Yn)n≥1 by
setting Ỹn = â−bnn Xn. Then, we can expect to estimate F by the empirical c.d.f. F̂n defined by

F̂n(x) =
1

n

n∑
k=1

1{Ỹk≤x} (1)

for all x ∈ R+, where 1{·} denotes the set indicator function.
Assuming that E(log2(Yn)) exists, let us define Var(en) = σ2. Easy computations then provide

E(β̂n) = β and Var(β̂n) =
σ2

nα2n
, where α2n = 1

n

∑n
k=1 b

2
k −

(
1
n

∑n
k=1 bk

)2
. If a central limit theorem

holds, its formulation can consequently only be θn(β̂n − β)
d−→ N (0, σ2), where d−→ stands for the

convergence in distribution and θn = αn
√
n. The only possible order for the convergence rate of β̂n

towards β hence is θn.

2.3. Asymptotics

We first provide asymptotic results on the euclidian estimates β̂n and ân when n→ +∞. Such results
are based on strong laws of large numbers for weighted sums of i.i.d. random variables, as provided by
[8, 3, 4], and on the δ-method theorem (e.g. [19]). Because of the reduced size of the present paper,
details are omitted, which may be found in [5], as for all proofs, later on.

Proposition 1 Suppose that E(Z21 ) < +∞. Then:

1. We have αn(β̂n − β)
a.s.−→ 0 (Strong consistency).

2. We have lim sup
n→+∞

√
nα2n

bn
√
logn
|β̂n − β| ≤ 2

√
2σ a.s. (Law of Iterated Logarithm),

3. If, addingly, θn/bn → +∞ (where θn = αn
√
n), then θn(β̂n−β)

d−→ N (0, σ2) and θn(ân−a)
d−→

N (0, a2σ2) (Central Limit Theorem).

It is straightforward to verify that α2n+1 = α2n + n
n+1

(
bn+1 − b̄n

)2, which implies that (αn)n≥1 is a non

decreasing sequence. This monotonicity plus the previous consistency result imply that β̂n
a.s.−→ β.

It is known from standard results on linear regression that

σ̂2n =
1

n− 2

n∑
k=1

(
Zk − β̂nbk − µ̂n

)2
is an unbiased consistent estimator of σ2. Then, the asymptotic variance of θn(ân − a) is consistently
estimated by â2nσ̂

2
n.

Example 2 If bn = (n− 1)α with α > 0, we have

θn
+∞∼ αnα+1/2

(α+ 1)
√

2α+ 1

and the condition θn/bn → +∞ is true.

In case bn = n− 1, we get n3/2(β̂n − β)
d−→ N (0, 12σ2), which is consistent with the central limit

result from [13].

If bn = log n, we have θn
+∞∼
√
n and the condition θn/bn → +∞ is true.

The c.d.f. F is now estimated by the empirical c.d.f., as defined by (1). The following uniform
consistency result is based on the Glivenko-Cantelli theorem.
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Figure 1: Cumulated times between successive failures of the air-conditioning equipment.

Proposition 3 (Uniform Strong Consistency) Assume that Z1 = ln (X1) admits a bounded den-
sity g with respect to Lebesgue measure, that Z1 has a second order moment and that

lim sup
n→+∞

b2n
√

log n√
nα2n

= 0. (2)

Then ‖F̂n − F‖∞ converges to 0 almost surely as n tends to infinity.

The boundedness condition on g is satisfied whenever f belongs to the usual parametric families

(Weibull, Gamma, log-normal, etc.). Condition (2) on the sequence
(
b2n
√
logn√
nα2n

)
n≥1

is satisfied for many

non decreasing sequences (bn)n≥1 tending to infinity. For example:

• Condition (2) is true as soon as b2n
√

log n/
√
n → 0, due to decreasingness of

(
α2n
)
n∈N. As a

special case, Condition (2) is true for bn = (log n)α with α > 0.

• if bn = (n− 1)α with α > 0 then

b2n
√

log n√
nα2n

+∞∼ (α+ 1)2(2α+ 1)
√

log n

α2
√
n

→ 0

(see Example 2) and Condition (2) is satisfied.

2.4. Numerical experiments

2.4.1. Illustrative example

We here consider a data set of size n = 29, for successive failures of an air-conditioning equipment
of a Boeing 720 aircraft. This data set is taken among 13 ones corresponding to 13 different aircrafts,
that were studied in [18] and are available in [15]. Figure 1 shows the cumulated times (operating
hours) between the successive failures. Table 1 summarizes the results obtained for the estimation
of parameter a for various sequences (bn)n≥1. The estimation â of a is given with a 95% asymptotic
confidence interval [âmin, âmax] which is computed using point 3 of Proposition 1. We can see that
whatever the choice for bn, the times between successive failures seem to be stochastically increasing.
Finally, Figure 2 shows the empirical c.d.f.s for the different choices of the bn’s.

2.4.2. Monte Carlo study of the estimators

Figure 3 shows three boxplots obtained from estimates of a ∈ {0.85, 0.9, 0.95} for various sequences
(bn)n≥1 based on 1000 simulated samples of size n = 50. Here, the underlying renewal process is gen-
erated using independent inter-arrival times that follow a Weibull distribution with shape parameter
2 and scale parameter 10. These figures show that the convergence rate of ân heavily depends on bn.
This is coherent with the results of Example 2, from where we know that for bn = n − 1,

√
n− 1

or log n, the convergence rate θn of ân is proportional to n3/2, n or
√
n, respectively. Figure 4 next

illustrates the uniform consistency result obtained in Proposition 3, where F̂n of F is based on the
empirical distribution function obtained from the n first observations of the pseudo renewal process
(Ỹn)n≥1 defined by Ỹn = â−bnXn: the c.d.f. F (black line) is compared with several estimates F̂n for
n ∈ {50, 100, 200, 300, 400, 500}.



bn n− 1
√
n− 1 log n

â 1.078 [1.052,1.104] 1.740 [1.555,1926] 2.590 [2.233,2.947]

Table 1: Estimates of a with 95% asymptotic confidence intervals (within brackets) based on different bn’s.
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Figure 2: Empirical cumulative distribution function for the air-conditioning equipment.

●●

●●●

●●●

●●●

●
●●

●●

●

●

●●

a=0.85 a=0.90 a=0.95

0.
6

0.
8

1.
0

1.
2

1.
4

bn = n − 1

●

●

●●
●
●

●

●●

●
●

●

●

●

●●

●
●

●●●

●●

●
●

●

●●

●

●●

●

a=0.85 a=0.90 a=0.95

0.
6

0.
8

1.
0

1.
2

1.
4

bn = n − 1

●

●●
●
●
●
●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●●
●

●

●

a=0.85 a=0.90 a=0.95

0.
6

0.
8

1.
0

1.
2

1.
4

bn = log(n)

Figure 3: Comparison of boxplots of 1000 estimates of a ∈ {0.85, 0.9, 0.95} obtained from samples of size 50
for bn = n− 1,

√
n− 1and log n.



0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

True
n=500
n=400
n=300
n=200
n=100
n=50

Figure 4: Comparison of F̂n and F for various values of n.

3. APPLICATION TO RELIABILITY

A repairable system is now considered, with instantaneous repairs at failures and successive life-times
modelled by an EGP. Once the process has been statistically estimated, it may be used for prediction
purposes and/or optimization of replacement policies. As for prediction purpose, a typical quantity of
interest is the mean number of failures on some time interval [0, t], namely the pseudo-renewal function
associated to an EGP seen as a counting process.

3.1. The pseudo-renewal function

We first provide conditions for the pseudo-renewal function to be finite. Using results from [6] (in the
more general set up of Markov renewal functions), a necessary condition is known to be lim

n→+∞
Tn =∞

a.s. Using a strong law of large numbers for independent but non identically distributed random
variables from [17], we may here prove that this condition is equivalent to

∑+∞
i=1 a

bi = +∞, which is
hence assumed in all the following.

Example 4 In case bn = nα (log n)β with α, β ≥ 0 and a ∈ (0, 1), one can prove that
∑+∞

i=1 a
bi = +∞

if and only if α = 0 and either β < 1 or (β = 1 and a ≥ 1/e), using Raabe’s rule for the last condition.

To write a "pseudo-renewal" equation fullfilled by the "pseudo-renewal" function, we need to
envision the case where the first interarrival time X1 of the EGP is distributed as Xk = abkYk, with
k ≥ 1. Under this condition, the system has already been repaired k − 1 times at time T0 = 0 and
the successive interarrival times are distributed as Xk, Xk+1, . . . This situation is denoted by Z0 = k.
More generally, we also set ZTn = k in case Xn+1 is distributed as abkYk (all k ≥ n+ 1) and Zt = ZTn
for Tn ≤ t < Tn+1. The process (Zt)t≥0 then appears as a semi-Markov process with semi-Markov
kernel provided by q (i, j, dx) = 1{j=i+1}dFi (x).

For k ≥ 1, we next set Pk to be the conditional probability measure given that Z0 = k, with k ≥ 1
and Ek the associated conditional expectation (with P1 = P and E1 = E). For all t ≥ 0, we also set
N (t) to be the number of arrivals of the EGP on [0, t]. Given that Z0 = k, the "pseudo-renewal"
function associated to the EGP then is

nk (t) = Ek (N (t)) =
∑+∞

n=1 Pk (Tn ≤ t) (with n1 (t) = n (t))

and nk (t) stands for the mean number of failures on [0, t]. The function nk (t) also appears as the
Markov renewal function associated to the semi-Markov process (Zt)t≥0.

A suffi cient condition for nk (t) to be finite for all t ≥ 0 is provided by the following proposition,
which may be proved using Raabe’s rule again. The pseudo-renewal function nk (t) is also proved to
fullfill a Markov renewal equation, using classical renewal arguments ([6] e.g.).



Proposition 5 Assume that limn→+∞ nabn > 1/E (Y1) (and hence
∑+∞

i=1 a
bi = +∞).

1. We then have nk (t) < +∞ for all t ≥ 0 and all k ≥ 1.

2. The function nk fulfills the following Markov renewal equation:

nk = Fk + fk ∗ nk+1 (3)

for all k ≥ 1, where Fk (resp. fk) stands for the c.d.f. (resp. p.d.f.) of Xk.

Example 6 For bn = (log n)β with β ≥ 0 and a ∈ (0, 1), we derive that nk (t) is finite for all t ≥ 0
and all k ≥ 1 as soon as one of the following condition is fulfilled: 1. β < 1, 2. β = 1 and a > 1/e,
3. β = 1, a = 1/e, and E (Y1) > 1.

Using bounding arguments from [10], we now provide practical tools for the numerical assessment
of nk (t) in case a ≥ 1.

Corollary 7 Assume a ≥ 1. Setting un (t) = P (Tn ≤ t) for all n ≥ 1, we have:

0 ≤ n (t)−
∑N

n=1 un (t)

n (t)
≤ uN (t) (4)

for all N ≥ 1. Also, (un (t))n≥1 may be computed recursively using

u1 (t) = F (t) ,

un+1 (t) = (fn+1 ∗ un) (t) =
1

abn+1

∫ t

0
un (u) f

(
t− u
abn+1

)
du (5)

for all n ≥ 1, where F (resp. f) stands for the c.d.f. (resp. p.d.f.) of Y1.

Remark 8 From a numerical point of view, the ui (t)’s are computed using discrete convolutions in
(5), which induces numerical errors. Such errors might be quantified using similar methods as in [16].

In case a < 1, the previous result is not valid because nN (t) ≥ n (t). In that case, Monte-Carlo
simulations may be used to compute the pseudo-renewal function. A lower bound nc (t) may also be
given, which converges to n (t) when c goes to zero and hence provides a lower approximation for n (t).
This approximation is constructed and computed via the following proposition.

Proposition 9 For c > 0 and t ≥ 0, let

τ c = inf (n ≥ 1 : Xn < c) and nc (t) = E

(
τc−1∑
n=1

1{Tn≤t}

)
(6)

(0 in case of an empty sum).

1. We have: nc (t) ≤ n (t) and lim
c→0+

nc (t) = n (t).

2. Setting ucn (t) = P (Tn ≤ t,X1 ≥ c, . . . ,Xn ≥ c) for all n ≥ 1, we have:

nc (t) =

b tcc∑
n=1

ucn (t) , (7)

where b·c stands for the floor function. Also, (ucn (t))n≥1 may be computed recursively using

uc1 (t) = (F (t)− F (c))+ and ucn+1 (t) =
1

abn+1

∫ (t−c)+

0
ucn (u) f

(
t− u
abn+1

)
du for all n ≥ 1.

(8)



3.2. A replacement policy

In case of non increasing lifetimes (a < 1), a preventive replacement policy is studied, where the
system is instantaneously replaced at some cost cR as soon as a lifetime Xi is observed to be shorter
than a predefined threshold s (s > 0). Between replacements, the cost of an instantaneous repair after
failure is denoted by cF , with cR ≥ cF . We set C (s) to be the asymptotic unitary cost per unit time.
The next proposition use classical results from renewal theory to derive the existence of C (s), and its
expression.

Proposition 10 Assume a ∈ (0, 1). Setting C (s; [0, t]) to be the cumulated cost on [0, t] for the
threshold s, the asymptotic unitary cost per unit time exists a.s. and is provided by

C (s) = lim
t→+∞

C (s; [0, t])

t
=
cR + cFE (τ s − 1)

E (Tτs)
a.s. (9)

where τ s is defined in (6). Besides:

E (τ s − 1) =

+∞∑
k=1

vsk and E (Tτs) = E (Y1)

(
1 +

+∞∑
k=1

abk+1 vsk

)

with

vsk =
k∏
i=1

F̄
( s

abi

)
for all k ≥ 1 and F̄ = 1− F. (10)

We next provide tools for the numerical assessment of C (s).

Proposition 11 Assume a ∈ (0, 1). We have:∣∣∣∣C (s)− mC (s) +MC (s)

2

∣∣∣∣ ≤ ∆Cmax (s) :=
MC (s)−mC (s)

2
,

where

mC (s) =
cR + cF SN1 (s)

E (Y1)
(

1 + SN2 (s) + abN+2 vsN+1/F
(

s

abN+2

)) ,
MC (s) =

cR + cF

(
SN1 (s) + vsN+1/F

(
s

abN+2

))
E (Y1)

(
1 + SN2 (s)

) ,

and SN1 (s) =
∑N

k=1 v
s
k, SN2 (s) =

∑N
k=1 a

bk+1vsk (with v
s
k defined by (10)).

3.3. Numerical experiments

3.3.1. Computation of the pseudo-renewal function

We first consider the case where a ≥ 1: the random variable Y1 follows Γ (1.2, 2.5) with E (Y1) = 3,
Var (Y1) = 7.5, bn = n0.3 and a = 1.2. The approximation of n (t) provided by Corollary 7 is plotted
against t in Figure 5a for N = 20. The maximal relative error provided by the approximation is about
4.2 × 10−6. We also plot n (t) computed by Monte-Carlo (MC) simulations and the 95% confidence
band for 103 stories in the same Figure. The results are quite similar.

We next consider the case where a < 1 (and lim
n→+∞

nabn > 1/E (Y1)): the random variable Y1

follows Γ (2.5, 1) with E (Y1) = Var (Y1) = 2.5, bn = (log n)0.7 and a = 0.8. The approximating lower
bound nc (t) for n (t) is computed via the results of Proposition 9 for c = 0.05. It is compared in
Figure 5b to the results for n (t) by MC simulations with 95% confidence band for 103 stories. As
expected, we observe that nc (t) is a good approximation of n (t) for small c.
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3.3.2. The replacement policy

The random variable Y1 follows Γ (2.5, 1) with E (Y1) = Var (Y1) = 2.5, bn = (log n)0.7, a = 0.8,
cR = 1 and cF = 0.5. For N = 100, the maximal absolute error ∆Cmax (s) decreases very quickly
as s increases (∆Cmax (0.4) ' 8 × 10−5, ∆Cmax (0.7) ' 3 × 10−12, beyond the machine precision for
s ≥ 0.9). The cost function C (s) is plotted against s in Figure 6. The cost function reaches its
minimum at sopt ' 1.70, with min

s>0
C (s) = C

(
sopt
)
' 0.17.

4. CONCLUDING REMARKS AND PROSPECTS

Contrary to classical renewal processes and just as the geometric processes proposed by [14], extended
geometric processes allow to account for some stochastic monotony property for the successive inter-
arrival times of a counting process, with some more flexibility in the modelling than geometric processes
however. Extended geometric processes may hence be a simple alternative to the virtual age models
proposed by [9] and [11] for the modeling of imperfect maintenance actions e.g.

From the estimation point of view, we saw that the convergence rate of the estimator of the
Euclidean parameter strongly depends on the sequence (bn)n≥1. A miss-specification of the sequence
(bn)n≥1 will naturally lead to biased estimates. To make the model more flexible, it would be interesting
to consider a parametrized version of the sequence (bn)n≥1 setting for example bn = g(n, θ), where
θ would be an additional Euclidean parameter, to be estimated. We can also mention the lack of a
central limit theorem for the estimator F̂ of the underlying c.d.f. F . Indeed, standard methods cannot
be used here, because of the deterministic nature of the bn’s. This problem hence requires some more
investigation. Such a result would however be useful for testing the hypothesis that the underlying
c.d.f. F belongs to some parametric family. Another possible issue would be to include covariates in
this model in order to describe (e.g.) the effect of the environment on the monotonicity of the EGP.

In case a < 1, a lower bound has been provided for the pseudo-renewal function, which is easy



to compute using Lemma 9. However, we haven’t been able to provide a computable upper bound,
though necessary for the numerical assessment of the results precision. Indeed, usual tools such as
those used in case a ≥ 1 are inappropriate here, and new tools should be developed. As for the
replacement policy, because of the random character of the successive lifetimes, an alternate policy
based on a predefined number m of consecutive lifetimes under a threshold s, might be better adapted
than the present policy, based on a replacement at the first observation of a single lifetime bellow s.
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