
Optimization of the Corrective Maintenance ofa Repairable SystemSophie Bloch-MercierÉquipe d'Analyse et de Mathématiques Appliquées,Université de Marne-la-Vallée,Cité Descartes, 5, boulevard Descartes, Champs-sur-Marne,77454 Marne-la-Vallée cedex, FRANCE(e-mail: merciers@univ-mlv.fr)Abstract. We consider a repairable system such that di�erent completeness de-grees are possible for the repair (or corrective maintenance), that go from a 'mini-mal' up to a 'complete' repair. Our questions are: to what extent must the system berepaired in case of failure for the long-run availability to be optimal? In which casesare complete repairs optimal? The system evolves in time according to a Markovprocess as long as it is running whereas the durations of repairs follow general dis-tributions. After repair, the system starts again in an up-state i with probabilityd (i). We give conditions under which the optimal restarting distribution dopt isnon random. Besides, we show that, for an 'ageing' system, the more complete therepair, the higher the stationary availability. The 'ageing' property of the system isexpressed with some monotonicity for the underlying Markov process with respectto the reversed hazard rate ordering.1 IntroductionLet us consider a repairable system such that di�erent completeness degreesare possible for the repair (or corrective maintenance), that go from a 'mini-mal' up to a 'complete' repair. Then, in case of failure, is it worth achievingcomplete repairs, that may be long (or costly), or is it better to repair thesystem as quickly as possible ? To which extent should the corrective main-tenance be performed ? In which cases are complete repairs optimal ?The criterion used to measure the performance of the system is the long-run availability, namely the probability for the system to be up when inlong time run. Besides, the system is assumed to evolve in time accordingto a Markov process with a �nite state space up to its �rst failure, and inthe same way after any repair. It is subject to di�erent kinds of failure. Toeach corresponds a repair with a random duration and a general distribution.After any repair, the new start of the system is independent on the previousevolution of the system and is controlled by a �xed distribution d on the up-states: if the up-states of the system are denoted by 1, 2, ..., m, the systemstarts again after any repair in state i (1 � i � m) with probability d (i).For such a system, we compute the long-run availability A1 (d) (see Sec-tion 3) and then look for the optimal restarting distribution dopt, namely



2 Bloch-Merciersuch that the long-run availability is optimal. It can be seen on numericalexamples (see Bloch-Mercier 2000, 2001b) that this optimal distribution doesnot always correspond to a new start in a �xed up-state and may be random.From a theoretical point of view, this highly complicates its research. From apractical point of view, it is also easier to know exactly which component to�x in case of failure. Both of those remarks have lead us to study conditionsunder which the optimal restarting distribution is non random, which aregiven in Section 4.Besides, we may note that complete repairs are usual in industry. Indeed,the opposite situation means that there are some useless components whichare never repaired. (Though, note that some economical or technical con-straints may lead to set them up nevertheless). A natural question then is:under which conditions are complete repairs optimal ? Such conditions aregiven in Section 5: for a system with some kind of 'ageing' property, if it takesthe same time to achieve a complete or a minimal repair, we show that thelong run availability is all the higher as the repair is complete, so that com-plete repairs are optimal. The 'ageing' property of the system is translatedthrough some monotonicity for the underlying Markov process with respectto the reversed hazard rate ordering. The degree of completeness of the repairis measured with the reversed hazard rate ordering too.We �rst give in Section 2 some preliminary results on rh�monotoneMarkov processes from where the results of Section 5 are derived.2 PreliminaryLet �1 and �2 be two probability vectors on f1; :::;mg. We recall that �1is said to be greater than �2 in the sense of reversed hazard rate ordering,denoted by �1 �rh �2, if and only ifPjk=1 �1 (k)Pik=1 �1 (k) � Pjk=1 �2 (k)Pik=1 �2 (k) , for any 1 � i � j � m,when de�ned, using the convention 00 = 0 (see Keilson and Sumita (1982),Shaked and Shanthikumar (1994), Kijima (1997) or Block, Savits and Singh(1998) for instance).Now, let (Yt) be a Markov process on the �nite state space f1; :::;m+1g,let (P 0t (i; j))1�i;j�m+1 be the associated semi-group (P 0t (i; j) = Pi (Yt = j)for any 1 � i; j � m + 1 and t � 0), and let A0 = �a0i;j�1�i;j�m+1 be its(in�nitesimal) generator.Also, for 1 � i � m+1, let P 0t (i; �) be the i-th row of (P 0t (i; j))1�i;j�m+1.Following Kijima (1998), we �rst recall the de�nition of an rh-monotoneMarkov process and its characterization in terms of its generator:De�nition 1. The process (Yt) is an rh-monotone Markov process if andonly if P 0t (i; �) �rh P 0t (i+ 1; �) for any 1 � i � m, t � 0 .



Optimization of the Corrective Maintenance of a System 3Theorem 1 (Kijima (1998)). The process (Yt) is an rh-monotone Markovprocess if and only ifa0i;j = 0 for any 1 � j � i� 2 � m+ 1and a0i;j � a0i+1;j for any 3 � i+ 2 � j � m+ 1.We now give two other results for rh-monotone Markov processes withupper triangular generators. Some interpretation of the �rst result may befound in the few lines following Theorem 6.Theorem 2. Let (Yt) be an rh-monotone Markov process. Then:(P 0t (i; �) �rh P 0s (i; �) for any 1 � i � m+ 1, 0 � t � s)() (A0 is upper triangular)Theorem 3. Let (Yt) be an rh-monotone Markov process with an upper tri-angular generator. Then:Pk+1j=1 R +10 P 0t (i; j) dtPkj=1 R +10 P 0t (i; j) dt � Pk+1j=1 R +10 P 0t (i+ 1; j) dtPkj=1 R +10 P 0t (i+ 1; j) dt (1)for any 1 � i � k � m.Note that, without integral signs, inequalities (1) simply translate the rh-monotonicity of the process (Yt). The problem is to add the integral signs,which is done under the additional assumption of an upper triangular gener-ator.We now come to our reliability problem.3 Computation of the Long-run AvailabilityLet 1, 2, ..., m and m+ 1, ..., m+ p respectively be the up and down statesof the system. The symbol E (Rm+k;i) represents the mean duration of therepair associated to the down-state m+ k (1 � k � p) that puts the systemback to the up-state i (1 � i � m). Also, let R = (E (Rm+k;i))1�k�p;1�i�m.Let us recall that d (i) is the probability for the system to start again fromstate i (1 � i � m) after any repair and let d be the probability vector d =(d (1) ; d (2) ; :::; d (m)).Let T be the �rst on-period of the system and let (Xt) be the Markovprocess that describes the evolution of the system up to its �rst failure:Xt = � state of the system if t < T ,m+ k if t � T and XT = m+ k.Let (Pt (i; j))1�i;j�m be the semi-group associated to (Xt) and let A =(ai;j)1�i�m+p1�j�m+p be its (in�nitesimal) generator. We also use the following sub-matrices of A: A1 = (ai;j)1�i�m1�j�m and A2 = (ai;j) 1�i�mm+1�j�m+p.



4 Bloch-MercierLet Gi;j = R +10 Pt (i; j) dt for any 1 � i; j � m and G = (Gi;j)1�i�m1�j�m.Symbol Gi;j represents the time spent in state j before failure when thesystems starts from state i. We recall that G = �A�11 (see Kijima 1997,Theorem 4.25 for instance).Finally, let �1n be the n� 1 column vector of ones (with n 2 N� ).We get the following result:Theorem 4. The long-run availability of the system exists and isA1 (d) = 11 + a1 (d)with a1 (d) = dGA2R (td)dG�1m , (2)where td is the column vector transposed of d.The computation of the long-run availability is based on the fact that thelater evolution of the system after a new start following a repair only dependson the state in which the system starts again after repair. If (Zt) is the processthat describes the evolution of the system, with no truncation at time T ,the previous remark then means that (Zt) is a semi-regenerative process sothat we may apply general theorems from the Markov renewal theory (seeÇinlar (1975) or Cocozza-Thivent (1997) for instance). The numerator anddenominator of a1 (d) now respectively represent the Mean Down Time andMean Up Time of the system on a cycle of (Zt).4 Restriction of the Research of the OptimalRestarting Distribution to Dirac DistributionsFor 1 � i � m, let �i be the Dirac measure at i. Then, among the m di�erentnew starts in a �xed up-state i (which corresponds to d = �i), there clearlyexists one, say �i0 , such that A1 (�i) � A1 (�i0) for any 1 � i � m. We nowgive conditions for �i0 to be optimal not only among the �deterministic� newstarts but also among all the possible restarting distributions d.Theorem 5. Let (H1) and (H2) be the following assumptions:(H1) For any �xed k such that 2 � k � p, E (Rm+k;i) � E (Rm+k�1;i) isindependent of i (1 � i � m).(H2) For any �xed k (2 � k � p), (E (Rm+k;i)� E (Rm+k�1;i))1�i�m and(Ppl=k (gA2) (i; l))1�i�m are monotone with respect of i, with oppositevariations.



Optimization of the Corrective Maintenance of a System 5Then, under (H1) or (H2), there is a non random restarting distributionoptimal among all the possible restarting distributions: if i0 (1 � i0 � m) issuch that A1 (�i0) = max1�i�mA1 (�i), we then have A1 (d) � A1 (�i0)for any distribution d on f1; :::;mg.Note that no condition is required for the previous result to be true in caseof a single down-state. Also, it is easy to see that (H1) is true when durationsof repairs are independent on m+ k or on i, or when there is only one singlerepairman facility so that the duration of repair simply is the addition of thedurations of repairs for the di�erent components.As for assumption (H2), one may easily check that the most restrictivepart concerns the mean durations of repairs.5 A Su�cient Condition for Complete Repairs to beOptimalWe now give su�cient conditions for complete repairs to be optimal (withrespect to the long-run availability), or more generally, for the long-run avail-ability to be all the higher as the repair is complete. Those conditions arebased on the preliminary results given in Section 2. The process (Yt) hererepresents the evolution of the system up to its �rst failure, where the down-states have been aggregated:Yt = � state of the system if t < T ,m+ 1 if t � T .The mean duration for the repair E (Rm+k;i) is here assumed to be inde-pendent on i and we now note E (Rm+k;i) = E (Rm+k). Also, r is the columnvector of the E (Rm+k)'s for 1 � k � p.Theorem 6. Let us assume that :(H 01) A2r is increasing componentwise,(H 02) (Yt) is rh-monotone with an upper triangular generator (which is equiv-alent to A2�1p is increasing componentwise and A1 is upper triangularsuch that ai;j � ai+1;j for any 3 � i+ 2 � j � m).Then, for any probability row vectors d1 and d2 on f1; :::;mg:d1 �rh d2 =) D1 (d1) � D1 (d2) .In particular, the long-run availability is optimal for complete repairs.Assumptions 'A2r and A2�1p are increasing componentwise' respectivelymean that the mean duration of the repair following a breakdown in state iand that the 'global' failure rate associated to state i (Ppj=1 ai;m+j) are both
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