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Abstract. We consider a repairable system such that different completeness de-
grees are possible for the repair (or corrective maintenance), that go from a 'mini-
mal’ up to a ’complete’ repair. Our questions are: to what extent must the system be
repaired in case of failure for the long-run availability to be optimal? In which cases
are complete repairs optimal? The system evolves in time according to a Markov
process as long as it is running whereas the durations of repairs follow general dis-
tributions. After repair, the system starts again in an up-state ¢ with probability
d (i). We give conditions under which the optimal restarting distribution d°?* is
non random. Besides, we show that, for an ’ageing’ system, the more complete the
repair, the higher the stationary availability. The ’ageing’ property of the system is
expressed with some monotonicity for the underlying Markov process with respect
to the reversed hazard rate ordering.

1 Introduction

Let us consider a repairable system such that different completeness degrees
are possible for the repair (or corrective maintenance), that go from a 'mini-
mal’ up to a ’complete’ repair. Then, in case of failure, is it worth achieving
complete repairs, that may be long (or costly), or is it better to repair the
system as quickly as possible 7 To which extent should the corrective main-
tenance be performed ? In which cases are complete repairs optimal ?

The criterion used to measure the performance of the system is the long-
run availability, namely the probability for the system to be up when in
long time run. Besides, the system is assumed to evolve in time according
to a Markov process with a finite state space up to its first failure, and in
the same way after any repair. It is subject to different kinds of failure. To
each corresponds a repair with a random duration and a general distribution.
After any repair, the new start of the system is independent on the previous
evolution of the system and is controlled by a fixed distribution d on the up-
states: if the up-states of the system are denoted by 1, 2, ..., m, the system
starts again after any repair in state ¢ (1 < ¢ < m) with probability d (7).

For such a system, we compute the long-run availability A, (d) (see Sec-
tion 3) and then look for the optimal restarting distribution d°Pf, namely
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such that the long-run availability is optimal. It can be seen on numerical
examples (see Bloch-Mercier 2000, 2001b) that this optimal distribution does
not always correspond to a new start in a fixed up-state and may be random.
From a theoretical point of view, this highly complicates its research. From a
practical point of view, it is also easier to know exactly which component to
fix in case of failure. Both of those remarks have lead us to study conditions
under which the optimal restarting distribution is non random, which are
given in Section 4.

Besides, we may note that complete repairs are usual in industry. Indeed,
the opposite situation means that there are some useless components which
are never repaired. (Though, note that some economical or technical con-
straints may lead to set them up nevertheless). A natural question then is:
under which conditions are complete repairs optimal 7 Such conditions are
given in Section 5: for a system with some kind of ’ageing’ property, if it takes
the same time to achieve a complete or a minimal repair, we show that the
long run availability is all the higher as the repair is complete, so that com-
plete repairs are optimal. The ’ageing’ property of the system is translated
through some monotonicity for the underlying Markov process with respect
to the reversed hazard rate ordering. The degree of completeness of the repair
is measured with the reversed hazard rate ordering too.

We first give in Section 2 some preliminary results on rh—monotone
Markov processes from where the results of Section 5 are derived.

2 Preliminary

Let v and v» be two probability vectors on {1,...,m}. We recall that v,
is said to be greater than v in the sense of reversed hazard rate ordering,
denoted by vy <,p, 2, if and only if

Zi 1’/1() Zk 1’/2(
e 1’/1()_2 va (
0

when defined, using the convention § = 0 (see Keilson and Sumita (1982),
Shaked and Shanthikumar (1994), Kijima (1997) or Block, Savits and Singh
(1998) for instance).

Now, let (Y;) be a Markov process on the finite state space {1,...,m + 1},
let (P} (4,7))1<; j<ms1 De the associated semi-group (P (i,7) = P; (Y; = j)

S o ! H
for any 1 < i,j < m+1and t > 0), and let A’ = (am-)lgm.gm+1 be its

k)
k)

,forany 1 <i<j<m,

(infinitesimal) generator.
Also, for 1 <i <m+1,let P/ (i,e) be the i-th row of (P/ (4,5))1<; j<mi1-
Following Kijima (1998), we first recall the definition of an rh-monotone
Markov process and its characterization in terms of its generator:

Definition 1. The process (Y;) is an rh-monotone Markov process if and
only if P/ (i,e) <.p P{ (i +1,e) forany 1 <i<m,t>0.
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Theorem 1 (Kijima (1998)). The process (Y}) is an rh-monotone Markov
process if and only if

aj ;=0 forany1<j<i—-2<m+1
and aj ; < ajyy ; forany3<i+2<j<m+1.

We now give two other results for rh-monotone Markov processes with
upper triangular generators. Some interpretation of the first result may be
found in the few lines following Theorem 6.

Theorem 2. Let (Y;) be an rh-monotone Markov process. Then:
(P, (i) <rn Py (i,0) forany 1 <i<m+1,0<t<s)
<= (A’ is upper triangular)

Theorem 3. Let (Y;) be an rh-monotone Markov process with an upper tri-
angular generator. Then:

Sl TR G Y fy T R+ L g)d

s i (1)
S TP Gy dt T O TP+ 1,5) dt

forany1 <i<k<m.

Note that, without integral signs, inequalities (1) simply translate the rh-
monotonicity of the process (Y;). The problem is to add the integral signs,
which is done under the additional assumption of an upper triangular gener-
ator.

We now come to our reliability problem.

3 Computation of the Long-run Availability

Let 1,2, ..., mand m + 1, ..., m + p respectively be the up and down states
of the system. The symbol E(R,,tr,;) represents the mean duration of the
repair associated to the down-state m + &k (1 < k < p) that puts the system
back to the up-state i (1 <7 < m). Also, let R = (E(Rm+kvi))1§k§p,1§i§m'
Let us recall that d (i) is the probability for the system to start again from
state i (1 < ¢ < m) after any repair and let d be the probability vector d =
(d(1),d(2),.,d(m)).

Let T be the first on-period of the system and let (X;) be the Markov
process that describes the evolution of the system up to its first failure:

| state of the system if ¢t < T,
ET \m+k ift>Tand Xy =m + k.

Let (P (4,4))1<; j<m Pe the semi-group associated to (X;) and let A =
(ai,j)1<i<m+p be its (infinitesimal) generator. We also use the following sub-
1<j<m+p
matrices of A: Al = (a,'d)lgigm and Ag = (am') 1<i<m .
1<ji<m m+1<j<m+p
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Let Gy = [o7°° Py (i,§) dt for any 1 < i,j < m and G = (Gi;)1<i<m-

1<<m
Symbol G; ; represents the time spent in state j before failure when the
systems starts from state i. We recall that G = —Al_1 (see Kijima 1997,

Theorem 4.25 for instance).
Finally, let 1™ be the n x 1 column vector of ones (with n € N*).
We get the following result:

Theorem 4. The long-run availability of the system exists and is

1
A= T
with .
oo (d) = %’ (2)

where td is the column vector transposed of d.

The computation of the long-run availability is based on the fact that the
later evolution of the system after a new start following a repair only depends
on the state in which the system starts again after repair. If (Z;) is the process
that describes the evolution of the system, with no truncation at time T,
the previous remark then means that (Z;) is a semi-regenerative process so
that we may apply general theorems from the Markov renewal theory (see
Cinlar (1975) or Cocozza-Thivent (1997) for instance). The numerator and
denominator of as (d) now respectively represent the Mean Down Time and
Mean Up Time of the system on a cycle of (Z;).

4 Restriction of the Research of the Optimal
Restarting Distribution to Dirac Distributions

For 1 <i < m, let §; be the Dirac measure at 4. Then, among the m different
new starts in a fixed up-state ¢ (which corresponds to d = §;), there clearly
exists one, say d;,, such that Ay (8;) < Ae (d5,) for any 1 < i < m. We now
give conditions for d;, to be optimal not only among the ”deterministic” new
starts but also among all the possible restarting distributions d.

Theorem 5. Let (Hy) and (Hs) be the following assumptions:

(Hy) For any fixed k such that 2 < k < p, E(Rmtk,i) — E(Rmtk—1,:) s
independent of i (1 <i <m).

(Hy) For any fived k(2 <k <p), (E(Rptti) = E(Rmiio1))cicp ond
(Xiy (9A42) (3,1)), <;<,, are monotone with respect of i, with opposite
variations.
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Then, under (Hy) or (Hz), there is a mon random restarting distribution
optimal among all the possible restarting distributions: if ig (1 <49 < m) is
such that A (03,) = mMaxXi<i<m Aoo (0;), we then have Ax (d) < Auo (64)
for any distribution d on {1,...,m}.

Note that no condition is required for the previous result to be true in case
of a single down-state. Also, it is easy to see that (Hy) is true when durations
of repairs are independent on m + k or on i, or when there is only one single
repairman facility so that the duration of repair simply is the addition of the
durations of repairs for the different components.

As for assumption (H), one may easily check that the most restrictive
part concerns the mean durations of repairs.

5 A Sufficient Condition for Complete Repairs to be
Optimal

We now give sufficient conditions for complete repairs to be optimal (with
respect to the long-run availability), or more generally, for the long-run avail-
ability to be all the higher as the repair is complete. Those conditions are
based on the preliminary results given in Section 2. The process (Y;) here
represents the evolution of the system up to its first failure, where the down-
states have been aggregated:

v, — state of the system if ¢t < T,
ET lm+1 ift>T.

The mean duration for the repair E(Ry,+,;) is here assumed to be inde-
pendent on i and we now note E(Ry,14,;) = E(Rpt)- Also, r is the column
vector of the E(R,,45)’s for 1 < k < p.

Theorem 6. Let us assume that :

(Hy) Aar is increasing componentwise,

(HY) (V) is rh-monotone with an upper triangular generator (which is equiv-
alent to As1P is increasing componentwise and Ay is upper triangular
such that a; ; < aj+1,5 for any3<i+2<j<m).

Then, for any probability row vectors di and ds on {1,...,m}:
di <pp do => Doo (d1) > Do (do) .
In particular, the long-run availability is optimal for complete repairs.

Assumptions 'Asr and A,1P are increasing componentwise’ respectively
mean that the mean duration of the repair following a breakdown in state ¢

and that the ’global’ failure rate associated to state 4 (Z’;:l @i m+;) are both
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increasing with i for 1 < ¢ < m. Consequently, they mean that the up-states
are ranked according to their increasing degradation degree.

Besides, according to Theorem 2, (H)) means that P; (i,e) <, Ps(i,e)
for any 0 < ¢t < s, 1 <i < m. Consequently, (H}) is now equivalent to saying
that the system is more degraded at time s than at time ¢, or that the system
has got some ’ageing’ property.

Finally, di <., d> may be interpreted as ’the repair associated to d;’ is
more complete than 'the repair associated to ds’.

Now, Theorem 6 is the translation of the desired property, namely: the
more complete the repair, the higher the long run availability.

Note that some examples may be found in Bloch-Mercier (2001) showing
that this property is false if the ageing property of the system or the com-
pleteness degree of the repair are measured with the usual stochastic ordering,
which justify the employment of the reversed hazard rate ordering.
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