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MONOTONE MARKOV PROCESSES WITH RESPECT 
TO THE REVERSED HAZARD RATE ORDERING: 
AN APPLICATION TO RELIABILITY 

SOPHIE BLOCH-MERCIER,* Universite' de Marne-la-Valle'e 

Abstract 

We consider a repairable system with a finite state space which evolves in time according 
to a Markov process as long as it is working. We assume that this system is getting 
worse and worse while running: if the up-states are ranked according to their degree of 
increasing degradation, this is expressed by the fact that the Markov process is assumed 
to be monotone with respect to the reversed hazard rate and to have an upper triangular 
generator. We study this kind of process and apply the results to derive some properties 
of the stationary availability of the system. Namely, we show that, if the duration of the 
repair is independent of its completeness degree, then the more complete the repair, the 
higher the stationary availability, where the completeness degree of the repair is measured 
with the reversed hazard rate ordering. 
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1. Introduction 

Let us consider a repairable system such that different completeness degrees are possible 
for the repair, that go from a 'minimal' up to a 'complete' repair. Then, a natural problem 
(and it is of great importance in industry) is to look for the optimal degree of the repair, that 
is, find the degree which optimizes a certain criterion. Here, we concentrate on the complete 
repair and we want to give conditions under which it is optimal. To measure the performance 
of the system, we use the stationary (or long-run) availability, that is, the probability for the 
system to be up when in steady state. Then, under which conditions is a complete repair 
optimal? 

We may first propose an intuitive answer: if the system gets 'worse and worse' when running 
and if it takes the same time to achieve a complete or a minimal repair, then the stationary 
availability should be higher as the repair is complete. In other words, for a system with 
some kind of 'ageing' property and such that the duration of the repair is independent of its 
completeness degree, a complete repair should be optimal. The point indeed is to find the right 
ageing notion for our study. Namely, under which kind of ageing property is a complete repair 
optimal? 

Before answering such a question, we must specify the model for our system. We assume 
that it behaves according to a Markov process with a finite state space up to its first failure, 
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and in the same way after any repair. It is subject to different kinds of failure. To each 
corresponds a repair with a random duration and a general distribution. The duration of the 
repair is independent of its completeness degree. After any repair, the new start of the system 
is independent of the previous evolution of the system and is controlled by a fixed distribution 
on the up-states. 

We now come to the mathematical translation of the increasing degradation of the system 
when running, and we translate this property with some stochastic monotonicity for the un- 
derlying Markov process. Such properties have been much studied in the recent literature; 
see, for instance, Brown and Chaganty (1983), Shaked and Shanthikumar (1987), (1988), 
Shanthikumar (1988), Karasu and Ozekici (1989), Li and Shaked (1995), (1997) or Kijima 
(1997), (1998), where different stochastic monotonicities are considered. The problem then 
is to find the one most adapted to our study. The 'usual' stochastic ordering has been, up to 
now, the most commonly used in reliability (we may think of Barlow and Proschan (1975), 
of course, but it is still the case in more recent books devoted to various stochastic orderings 
such as Stoyan (1983), Shaked and Shanthikumar (1994) or Szekli (1995) in their applications 
to reliability). Then, a natural question is to wonder whether it is adapted to our study. The 
answer is negative, and we show that in order for the complete repairs to be optimal, the 
underlying Markov process needs to be monotone with respect to a stronger ordering than 
the usual stochastic one: it needs to be monotone with respect to the reversed hazard rate 
ordering. This kind of monotone process has been recently studied by Kijima (1998) (in a 
more general context than ours) and our own paper is mainly based on his work. Actually, 
because of a technical point, we have to limit ourselves to a smaller class of processes than 
those studied by Kijima and we concentrate on those with an upper triangular generator. Note 
that this restriction may also be motivated by the fact that, with such a generator, we show 
that the state of the system at time s is greater than at time t (0 It Is )  in the sense of the 
reversed hazard rate ordering. This appears to be the mathematical translation of the 'increasing 
degradation of the system when running' we were looking for. Then, for a system with such 
a behaviour, we show that a complete repair is optimal or, more generally, that the stationary 
availability is all the higher as the repair is complete. Here again, the degree of completeness of 
the repair is measured with the reversed hazard rate ordering and the usual stochastic ordering 
is inadequate. 

If we compare this with what may be found in the literature, we notice that some other 
examples of optimization problems where the optimum is attained under reversed hazard 
rate conditions, instead of just simple usual stochastic order conditions, may be found in 
Shanthikumar et al. (1991) and Cheng and Righter (1995) (both in queueing systems) or in 
Eeckhoudt and Gollier (1995) (in risk theory). 

This paper is subdivided as follows. In the next section, we recall and complete known results 
on monotone Markov processes with respect to the reversed hazard rate ordering. Section 3 is 
devoted to our application to reliability. 

Throughout the paper, 'increasing' and 'decreasing' mean, respectively, 'non-decreasing' 
and 'non-increasing' . 

2. 	Some results on reversed hazard rate monotone Markov processes with upper 
triangular generators 

We first summarize a few well-known facts about the reversed hazard rate ordering (see 
Keilson and Sumita (1982), Shaked and Shanthikumar (1994), Kijima (1997) or Block et al. 
(1998) for instance). 
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2.1. The reversed hazard rate ordering 

Let vl and v2 be two probability row vectors on (1, . . . ,rn). We recall that vl is said to be 
greater than v2 in the sense of reversed hazard rate ordering, denoted by vl +,h v2, if and only 
if 

which may also be written as 

when defined, using the convention 010 = 0. 
Also, it is convenient to note that inequalities (2.1) or (2.2) are required only for 1 p i 5 rn -1 

and j = i + 1 to get vl +,I, v2 (Keilson and Kester (1977)). 
Another way to express the reversed hazard rate ordering is to introduce the upper triangular 

rn x m matrix U such that every non-zero element is equal to 1 (Keilson and Sumita (1982)). 
The matrix U is non-singular and U-I  is the upper triangular matrix such that the only non-zero 
elements are u;' = 1 for 1 5 i 5 rn and u;Ll = -1 for 1 5 i 5 rn - 1. Then, vl +,h v2 is 
equivalent to 

(Let us recall that a matrix is said to be TP2 (totally positive of order 2) if and only if each of 
its minors of order 2 is non-negative; see Karlin (1968) for details.) 

We now recall an important result in the study of reversed hazard rate monotone Markov 
processes (Kijima (1997, Corollary 3.3)). 

Lemma 2.1. Let A and B be two non-negative matrices such that A has rn columns, B is a 
rn x rn matrix, AU E TP2 and B U  E TP2. VU-' B U  2 0, then A B U  E TP2. 

In case B is a stochastic rn x rn matrix, we can easily check that B U  E TP2 is now equivalent 
to Bi,. +,h Bi+],. and that U - I  BU 2 0 is equivalent to Bi,. Bi+',. for any 1 5 i 5 rn - 1 
(Kijima (1997, Corollary 3.5)), where Bi,, is the ith row of B .  As the reversed hazard rate 
ordering implies the usual stochastic ordering, B U  E TP2 now implies that U-' B U  2 0. We 
derive the following result: 

Corollary 2.1. Let vl and v2 be twoprobability row vectors on (1, . . . ,rn) such that vl <,h v2 
and let B be a stochastic rn x m matrix such that Bi,. +rBi+l,,for any 1 5 i 5 m - 1. Then 
V I  B <rh v2B. 

Finally, we give a complementary result that may be found in Joag-dev et al. (1995) (see 
Theorem 2.1, or more precisely the following remark) with a different formulation. 

Lemma 2.2. Let .$ and t2be two non-negative row vectors on { I ,  . . .,rn) (non-identically 
null) such that 



198 S. BLOCH-MERCIER 

Let z and w be two m x 1 column vectors such that w is positive and decreasing componentwise 
and 

is increasing componentwise. Then 
5'z t 2 z  
-< -. 
51w - 52w 

2.2. Reversed hazard rate monotone Markov processes with upper triangular generators 
Let (X,) be a Markov process on the finite state space (1, . . . ,m +1) and (Pt (i, j ) )  l s i ,jsm+l 

be its associated transition kernel: Pt(i, j )  = Pi (X, = j )  for any 1 5 i, j 5 m + 1 and t 2 0, 
where Pi (.) is the conditional distribution Pi (.) = P(. I Xo = i). 

For such a Markov process, let A = (ai, j)lsi, jsrn+1 be its (infinitesimal) generator. We 
recall that (see Anderson (1991) for details): 

a = 1 , for any 1 5 i, j 5 m + 1 such that i f j ,  
t+o+ t 

Also, for 1 5 i 5 m + 1, let Pt(i, 0) be the ith row of (Pt (i, j ) ) I g ,  j5m+l. 
Following Kijima, let us now recall the definition of a monotone Markov process with respect 

to the reversed hazard rate ordering (reversed hazard rate monotone Markov process for short) 
and its characterization in terms of its generator. 

Definition 2.1. We say that (X,) is a reversed hazard rate monotone Markov process (and we 
write (X,) E if and only if Pt(i, 0) +,h Pt(i + 1,o) for any 1 5 i p m, t 2 0 (or 
equivalently P,U E TP2). 

Proposition 2.1. (Kijima (1998).) The Markov process (X,) is reversed hazard rate monotone 
ifand only if 

a i , ,=O f o r a n y 1 5  j s i - 2 p m + l ,  

ai,j 5 ai+l, j ,  forany 3 5 i + 2 5 j 5 m + 1. 

In the same paper, Kijima also showed (in a more general context than ours) that for a 
reversed hazard rate monotone Markov process, the relation P, (1, 0) +,h Ps(1, o) is valid for 
any 0 p t p s .  If we limit ourselves to upper triangular generators, then any state i plays 
the same role as state 1 in Kijima's work. This explains the reverse direction of the following 
equivalence. 

Proposition 2.2. If (X,) is a reversed hazard rate monotone Markov process, then 

(Pt(i ,o) +,h Ps(i,o)forany 1 5 i p m +  1, 0 5  t 5 s )  
(j(A is upper triangular). (2.3) 

ProoJ: Let us assume that A is upper triangular and let 1 5 i 5 m + 1, 0 p t 5 s .  
Let us first check that Po(i, 0) <rh Ps-, (i, o) or, equivalently, 
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for any 1 p j 5 rn. This inequality may also be written as 

+	 ( P - )  5 for any 1 5 j 5 rn. (2.4) 
k= 1 k= l 

For j + 1 < i or j 2 i ,  it is clear. For j = i - 1 (and i > 2), as P, is upper triangular 
(just as A is), we have c L ~ \  P,-,(i, k) = 0 and (2.4) is again clear. We now know that 
Po(i, e) +,h Ps-,(i,e) forany 1 5 i 5 rn + 1, 0 p t 5 s .  

As (X,) E ./Cirh, we also have Pt(k, e) +,h Pt(k + 1, e) for any 1 5 k 5 rn, t > 0. Then, 
Corollary 2.1 (with rn + 1 substituted for rn) implies that 

m f l  m+l 
Po(i, k)P,(k. e) = Pt(i, e) +,I, Ps-t(i. k)Pt(k. e) = Ps(i. e). 

The reverse direction may be proved in a similar way to that in Kijima (1998, Lemma 3.1 (iii)). 

Remark 2.1. It is easy to check that the same result is still valid for a monotone Markov process 
with respect to the usual stochastic ordering, where the usual stochastic ordering is substituted 
for the reversed hazard rate ordering in (2.3). 

We now concentrate on those reversed hazard rate monotone Markov processes with upper 
triangular generators and we use the following notation. 

Definition 2.2. We say that (X,) E ./Ci,Uh if and only if (X,) E ./Ci,h and if its generator is upper 
triangular with non-zero diagonal coefficients, except for the last one which is null. 

Note that for an upper triangular generator, the last diagonal coefficient is necessarily null, so 
that this is not an assumption. (The matrix A is a special case of what is called in the literature 
a lossy generator; see Kijima (1997) for instance.) The other diagonal coefficients are assumed 
to be non-zero, which ensures that (1, . . . , rn) is a non-absorbing set. This allows us to avoid 
technical discussions which have no object for our application to reliability. 

We now use the following notation: for any 1 5 i,  1 5 rn, let T:" be the hitting-time of 
{I+ 1, . . . ,rn) for the process (X,) starting from state i (T:" = inf (t 2 0 I X, > I, Xo = i)) 
and let stf1(t) be the associated hazard rate. 

Proposition 2.3. For (XI) E d,Uh: 

(i) ti''' (t) is increasing in t, i.e., ql+'is of increasing hazard rate, for 1 5 i 5 1 5 rn 

(ii) til,f:(t) 1 t:+'(t) for 1 5 i 5 1 - 1 5 rn a n d t  > 0. 

(iii) s!(t) 	 > s!+l(t) for 1 5 i 5 1 - 1 p rn a n d t  2 0 

Pro05 The first point is similar to Theorem 4.2 of Kijima (1998). Indeed, in that paper, 
Kijima showed that for a reversed hazard rate monotone process (X,), T:" is of increasing 
hazard rate. With an upper triangular generator, we get the same result when the process starts 
from any 1 p i < rn just as in Proposition 2.2. Then, we need only prove (ii) and (iii). To that 
end, we use the same formulation for t(+'(t) as Kijima for his Theorem 4.2: let 1 p i 5 1 5 rn 
and let F;+' be the survival function of T,"'. We find that 

-1+1F )
I t pt(i9 j )  ~r=fiftlc'+I aj,k

t,!fl(t) = qfl(t) 
--

c > = ~  Pt(i, j )  
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Using the following equality 

with 
m+l 

a'.J = C aj,k and b, = 
Pt(i, j )  

k=l+l ~ ' , = lPt(i3 n) 
1(note that E n = l  b, = I), we find that 

Using the facts that 

x aj,k - x aj+l,k 5 0 for any j j1 - 1, 

(both because (XI) E JW!), we now derive from (2.5) that (t) p s!:: (t) for any 1 5 i p 
1 - 1 p rn, so (ii) is proved. 

The third point easily follows from the fact that (F:+l/F/)(t) is increasing in t, due to the 
inequality 

F;+I(t) - E > = ~  Pt(i, j )  E > = ~  Ps(i, j )  F:+'(s) 
-/ 

-
P i  j 

< ' P i ,  j 
---

F/(s) 
, for t  p s 

(see Proposition 2.2). Writing (F;+'/F;)' 2 0, we conclude that t:(t) 2 t:+'(t), which 
completes the proof. 

We now introduce the rn x m matrix G such that Gi, = Pt(i, j )  dt for any 1 p i, j p 
m. The value Gi, represents the mean duration spent in state j when the process starts from 
state i and will be of great importance in our application to reliability. Note that, for (XI) E JW,Uh, 
each Gi, is finite and that G = -A;', where A1 is the north-west rn x rn truncation of A (see 
Kijima (1997, Theorem 4.25) for instance). 

The next result is the key to our application to reliability. 

Proposition 2.4. If (XI) E &,Uh, then U-I G U  10 and G U  E TP2. 

Pro08 Let (XI) E JW,Uh. Then we know that P tU E TP2 (because (XI) E arb; see 
Definition 2. l), so that U - I  PtU 2 0 for any t 2 0 (see the few lines following Lemma 2.1). 
With an integration, we easily derive U-IGU 1 0, which is the required inequality. 

We now have to prove that G U  E TP2. Let E = GU,  that is, let E = (Ei,j)15i,j5m with 
Ei,j= EL=,  Gi,k, for any 1 j i,  j Irn. The matrix E clearly is upper triangular, as A and 
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G(= -AT')  are. Also, E is positive componentwise. For 1 5 i 5 m - 1, we have to prove 
that 

E i , j + ~ E i + ~ , j  (2.6)L E i , j E i + ~ , j + ~ >  

forany 1 s  j s m  - 1 .  
We call this property (Pi); let us show (Pi) by decreasing induction. 
It is clear that (P,-I) holds, because Em,j= 0 for any 1 5 j 5 m - 1 ( E  is upper 

triangular). 
Now let 1 5 i 5 m - 2. Let us assume that (Pk) is true for i + 1 5 k 5 m - 1 and let 

us show that (Pi) is true. If i 2 j ,  then Ei+1,j= 0 and (2.6) is true. Now let j 2 i + 1. As 
E = G U  and G = -A;', we have A I  E = -U, which implies that 

As A is upper triangular, we find that 

(because E,+ I , ,  = 0) and 

in the same way. 
As ai,i < 0, inequality (2.6) may now be written as 

by substituting Ei,, and Ei, with their values ((2.7) and (2.8)). 
Note that the term corresponding to k = i + 1 vanishes. Moreover, for k 2 i +2 we know 

that E ~ , , + I E ~ + ~ , ~  - E k , j E i f I , j f l> 0 and ai,k 5 ai+l,k (by the induction assumption and 
Proposition 2.1 respectively). 

Therefore, we derive 

where the equality follows from straightforward calculations and reduction. Then (2.6) is true, 
which completes the proof. 
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Remark 2.2. We have just shown that in the case of an upper triangular generator, if P,U E TP2 
for any 0 It,  then GU = lofo3PjU dt E TP2. We do not know whether this result is still valid 
without any assumption on the generator. 

3. An application to reliability 

Let us now apply the previous results to reliability. First, we describe our system. 

3.1. Description of the system 

We consider a repairable system with a finite state space. Let 1, 2, . . ., m be the up-states 
and m + 1, ..., m + p be the down-states. The system starts from an up-state. It evolves in 
time according to a Markov process up to its first failure and it almost surely breaks down after 
a finite time: Pi(T < +GO) = 1 for every i E { I ,  . . . ,m}, where T is the first on period of the 
system. The system evolves according to the same Markov process after any repair. The repair 
of the system begins as soon as it breaks down and has a random duration that depends neither 
on the previous evolution of the system nor on the completeness degree of the repair. If the 
system is in the down-state m +k (1 5 k p), the repair has the same (general) distribution 
as a random variable Rrn+k,with a finite mean rm+k Let r be the p x 1 column matrix of the 
means rm+k After any repair, the system starts again from an up-state that is assumed to be 
independent of the previous evolution of the system (and, consequently, of the down-state by 
the time of the repair). Then, let d(i)  be the probability for the system to start again from state i 
(1 5 i 5 m) after any repair and let d = (d(l) ,  d(2), . . . ,d(m)) be the so-called 'start-again' 
distribution (after repair). Note that the assumption according to which this distribution is the 
same after any down-state implies that there are some up-states that may be reached by repair 
from any down-state (they are numbered from 1 up to mo) and that the support of d is included 
in { I ,  . .  . ,mo}. 

Let (Xi)t2o be the Markov process that describes the evolution of the system up to its first 
failure: 

state of the system if t < T,
X: = [ r n + k  

i f t  > T a n d X k  = m + k .  

(The down-states of the system are absorbing.) 
Let A be its generator. The matrix A is subdivided as follows: 

where 

(matrix of the failure rates) and 0 . j  is the i x j matrix of zeros. 
In order to use the results of Section 2, we also consider the process (Xy) with state space 

(1, . . .,m + 11, which is described in the same way as (Xi) apart from the fact that the p down- 
states have been aggregated: the generator A" of (Xy) is given by = ai,rn+k and 
a ! .  = a i , ,  for 1 5  i ,  j 5 m. 

1.J 

As in Section 2, G is them x m matrix such that Gi, = So+" P,(i, j )  dt, where Pj(i, j )  = 
Pi(Xi = j) = Pi(Xy = j ) ,  for any 1 5 i, j 5 m. Let us recall that G = -AT'.  

Finally, for any n E N*, let inbe the n x 1 column vector of 1s. 
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3.2. Computation of the stationary availability 
We first compute the stationary availability, that is to say the probability that the system is in 

an up-state when in long-time run. The point to note is that the process (2 , )  that describes the 
evolution of the system (with no truncation at time T)  is a semi-regenerative process. Indeed, 
if we have a look at the succession of the new starts after repair (at T,,, n E N), it is readily 
seen that the later evolution of the system after a new start only depends on the state in which 
it starts again. 

Proposition 3.1. The stationary availability of the system exists and is 

with 

ProoJ Let (ZTn) , ,€~  be the Markov chain formed by the succession of the states in which 
the system starts again after repair. With our assumptions, it is clear that P(ZTn = i )  = d( i )  
for any 1 5 n ,  1 5 i 5 m, and the stationary distribution of this Markov chain is d .  

Also, by reducing the state space to C = {i E { I , . . . ,m} such that d( i )  > 0) if necessary, 
we may assume that this Markov chain is irreducible. Moreover, the lengths of the cycles of 
(2,)  are clearly non-lattice. 

Then, general theorems of the Markov renewal theory (see Cocozza-Thivent (1 997) or Cinlar 
(1975), for instance) imply that, if Cy=$(i)Ei(TI) < +oo, the stationary availability of the 
system exists and is 

where Ei is the conditional expectation given that Zo = i and TI the duration of the first cycle 
(To = 0). 

Let us recall that T is the first on period of the system and let TRepbe the duration of the 
repair at the end of the first cycle. With this notation, we have 

with 

Moreover, for 1 5 i 5 m, we also have 

and 
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with 

m 

= CGi,jy,m+k = (GA2)(i, m + k ) .  
j=l 

We derive the existence of the stationary availability and (3.1) results from straightforward 
calculations. 

Remark 3.1. Note that, from this proof, (3.1) may simply be understood as the usual quotient 
of the mean down-time by the mean up-time of the system on a cycle. 

3.3. Some conditions under which a complete repair is optimal 

We now come to our initial problem, as stated in the introduction: we give here conditions 
under which a complete repair is optimal or, more generally, under which the stationary 
availability is higher as the repair is complete. 

With that aim, we first order the up-states according to their increasing degradation degree, 
or, more precisely, in such a way that the mean duration of the repair following a breakdown 
in state i increases with i (for 1 5 i 5 m ) .  This is expressed by assuming that the vector A2r  
is increasing componentwise. Under this assumption, a repair associated with the 'start-again' 
distribution d is considered to be more complete than a repair associated with d2 if dl is smaller 
than d2, with respect to the reversed hazard rate ordering. 

Also, the ageing property of our system is translated by assuming that the Markov process 
(Xy) that describes the evolution of the system up to its first failure is in M!. Note that, 
according to Proposition 2.1, this implies that the 'global' failure rate associated with state i 
( C y = l  ai,,+j) is increasing with i for 1 5 i 5 m (or equivalently ~ 2 i J '  is increasing compo- 
nentwise). This assumption is quite natural, for the up-states have been ordered according to 
their increasing degradation degree. 

Proposition 3.2. Let us assume that: 

(HI) the vector A2r is increasing componentwise; 

(H2) (Xy) E M,Uh (which is equivalent to saying that ~ 2 i J 'is increasing componentwise and 
A1 is upper triangular such that a[,, 5 ai+l,, for any 3 5 i +2 5 j 5 m).  

Then, for any probability row vectors d l  and d2 on (1, . . . ,m ]  with support in (1, . . . ,mo] 

In particulal; the stationary availability is optimal for a complete repair: 

for any probability row vector d on (1,  . . . ,m }  with support in (1, .. . ,mo}, where 61 is  the 
Dirac distribution at the perjfect working state, denoted by 1. 



Monotone Markov processes and reliability 

FIGUREI :  Structure of the system. 

ProoJ Let us take d l  and d2such that d l  +,h d2 or, equivalently, such that 

Note that, as (Xr)E Al/CC,U,we know from Proposition 2.4 that G U  E TP2 and u-' G U  2 0. 
Then, Lemma 2.1 with 

and B = G implies that 

Now, we may derive from Lemma 2.2 with ! f l  = dlG,  !f2 = d2G, z = A2r and w = im 
(with the help of (HI)) that 

dl GA2r d2GA2r 
I------ 3 

d l ~ i m  d 2 ~ i "  

which means that d,(dl) Id,(d2) (see (3.1)). 
The second point is straightforward, since dl <,h d for any d ,  which completes the proof. 

We now end our study with two examples that show that the usual stochastic ordering is 
adapted neither to modelling the ageing property of our system nor to measuring the complete- 
ness degree of the repair in order to get the desired property, that is the more complete the 
repair, the higher the stationary availability. 

In both examples, we consider a system composed of four components A,  B, C and D, with 
respective constant failure rates LA,  A B ,  AC and A D .  Each component may be repaired when 
the system is down, but none when the system is up. 

Example 3.1. Here, component A and the sub-system composed of B, C and D (see Figure 1) 
are in stand-by redundancy: at first, component A is active and the sub-system is waiting. 
When component A fails, the sub-system is activated. Component C starts with probability 
yc. Components B and D always start. 

The up-states are: 1 = A(BCD),, 2 = ABCD, 3 = A B C D  and 4 = ABCD, where 
the symbol A means that component A is active, and A means that it has failed. We use the 
same notation for components B, C and D. The notation (BCD), means that the sub-system 
composed of B, C and D is inactive (or 'waiting'). 
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The down-states now are: 5 = ABC D, 6 = A BCD,  7 = ABCD,  8 = ABED. 
Here, each of the four down-states may lead to the up-states 1 and 2 by repair and mo = 2. 

We have 

We take Ac 5 AB, SO that A ~ ~ P yc) AC + As so that the is increasing, and AA(l - I 
aggregated process ( X : )  is monotone with respect to the usual stochastic ordering (with an 
upper triangular generator). (See Kijima (1997) for a characterization of a monotone Markov 
process with respect to the usual stochastic ordering in terms of its generator.) 

There is a single repairman and the duration for the repair of A is negligible in front of the 
others. Then, the mean duration of the repair is independent of the state (1 or 2) in which the 
system starts again. 

Numerically, we take A A  = 1, A B  = 0.8, A C  = 0.1, A D  = 0.1 and yc = 0.1. 

The mean durations for the repair of B, C and D respectively are 0.001, 0.1 and 0.01. We 


derive: 

=r 1.:") and 

0.001 

A2r  = [::%] 
0.101 0.0918 

and (Hl)  is true. After computation, we also get 

(and so it is better not to repair component A). 

As SI is smaller than S2 for most stochastic orderings (actually, we do not know of any 
counterexample), we find that, under the assumptions of this example, d l  smaller than d2 does 
not imply that D,(dl) 2 D,(d2), whatever the stochastic ordering notion used to compare 
dl and d2may be. Then, the Markov process needs to be monotone with respect to a stronger 
stochastic ordering than the usual one and (H2) seems to be required. 

Example 3.2. Here, component A, component B and the sub-system composed of components 
C and D in series (see Figure 2) are in standby-redundancy. At first, component A is active. 
When component A fails, component B is activated and starts with a probability YB. When 
component B fails (or when it refuses to start), the sub-system composed of components C and 
D is activated. Component C starts with probability yc and component D with probability yo. 

The up-states are 1 = A Bw(CD),, _2 -= A B(cD),, 3 = A BCD, and the down-states are 
4 = A BCD, 5 = A BCD,  6 = A B C  D. Each of the three down-states leads to the three 
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FIGURE2: Structure of the system. 

up-states by repair (mo = m = 3). We have 

where 

We take: h~ = 4, h~ = 5.6, h c  = 3.9, A D  = 3.9, y~ = 0.3, yc = 0.2 and yo = 0 4. . We 
then get 

and 

There is a single repairman and the durations for the repairs of A and B are negligible in 
front of the others. The mean durations for the repairs of C and D are, respectively, 0.01 and 
0.015. We compute 

0.0476 
r = and A2r = (0.0952) .(a'!:) 

0.0975 

Then, (Hl) and (H2) are true (and the results of Proposition 3.2 are valid). 
We take d l  = [0.5,0.5,0] and d2 = [0.5,0,0.5]. It is easy to check that dl d2, but that 

dl ,4rh d2 and we get D,(dl) = 0.9332 < D,(d2) = 0.9355. 
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We now take dl = [i,g,&] and d2 = [i,i, i] (Kijima (1997,  Example 3.8)). We now 
have dl +hr d 2 ,  but dl $rh d 2 ,  where +hr represents ordering with respect to the hazard rate. 
Here we get D,(dl) = 0.9284 < D,(d2) =0.9286. 

We derive from this example that, even assuming ( H I )  and (H2),  neither dl d2 nor 
dl +hr d2is sufficient to deduce that D,(dl ) 2 D,(d2), which confirms the accuracy of our 
assumption that dl +,h d2. 
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