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Abstract : We consider a system that can be up or down at time t. This system is assumed to be reparable, with
a �nite state space, and to evolve among the up states according to a Markov process. A repair begins as
soon as the system is down and has a random duration with a general distribution. This system is subjected
to a preventive maintenance policy : the system is instantaneously inspected at random times until it is
found in such a �bad�state that we stop it to maintain it, or until it is found down, being repaired, whichever
occurs �rst. The random inspection times depend on the successive states in which the system is found
when inspected. The random duration of a maintenance action depends on the degradation state of the
system. We compute the stationary availability of the maintained system and we give a su¢ cient condition
for the preventive maintenance policy to improve the stationary availability. We show in a particular case
that the optimisation of the preventive maintenance policy may be restricted to the maintenance policies
with deterministic inter-inspections intervals. We observe the same property on other examples.

1 Description of the System - Notations

We consider a reparable system that evolves among the up-states according to a Markov process. Let �1�,
�2�, ..., �m" be the up-states. (One can imagine, for example, that the states �1�to �m�correspond to
some increasing degradation of the system). We assume that the system has a single down state, denoted
by �m + 1�. At the beginning, the system is up. Let T be the �rst on-period of the system and let�
X1
t

�
t�0 be the process that describes the evolution of the system up to the �rst failure :

X1
t =

�
state of the system if t � T ,
m+ 1 if t > T .�

X1
t

�
is a Markov process. We assume that the system almost surely breaks down after a �nite time

: Pi (T < +1) = 1 for every i 2 f1; :::;mg. When the system goes down, a repair is begun. If the
system is in state i 2 f1; :::;mg by the time of the breakdown, the repair has a random duration that
does not depend on the previous evolution of the system except from state i and has the same (general)
distribution as a random variable Ri, with a �nite mean. After a repair, the system is in an up state that
does not depend on the previous evolution of the system. For i 2 f1; :::;mg, let DR (i) be the probability
that the system is in state i after a repair and let DR = (DR (1) ; :::; DR (m)).
This system is subjected to the following preventive maintenance policy.
Let U1, U2, ..., Um be non-negative random variables with �1, �2, ..., �m as respective distributions

and �nite positive expectations. Let p be a �xed integer, 1 � p � m � 1, and let Mp+1, Mp+2, ..., Mm

be random variables with �nite expectations.
The system is instantaneously inspected at times S1, S2, ..., Sn, ... recursively de�ned by : S1 is

a random variable independent on the evolution of the system (except from state X1
0 ), with �X1

0
for

distribution and, for n 2 N�,

� If X1
Sn
2 f1; :::; pg, the system is in a �good�state. We leave it evoluate alone and it is inspected

once again at time Sn+1 = Sn+U (n), where U (n) is a random variable independent on the evolution
of the system before Sn (except from state X1

Sn
), with �X1

Sn
for distribution.

� If X1
Sn

2 fp + 1; :::;mg, the system is in a �bad� state. It is stopped to be maintained. The
maintenance action lasts for a random duration that is independent on the evolution of the system
before Sn (except from state X1

Sn
), with the same distribution as MX1

Sn
.

� If X1
Sn
= m + 1, the system is down, being repaired. The repair is carried out up to its end with

no further inspection.



In the same way as after a repair, we assume that after a maintenance action, the system is in an up
state that does not depend on the previous evolution of the system. For i 2 f1; :::;mg, let DM (i) be the
probability that the system is in state i after a maintenance action and let DM = (DM (1) ; :::; DM (m)).
After a repair or a maintenance action (a down period), the sequence of the inspections is renewed,

which means that we start again with a new sequence of inspections, recursively de�ned as above.
Let �m+ 2" be the maintenance state and (Xt)t�0 be the process that describes the evolution of the

maintained system, which takes its values in f1; :::;m+2g. We can notice that, after a down period, the
later evolution of the maintained system only depends on the state in which the system starts again, so
that (Xt) is a semi-regenerative process. This is the basic remark to compute the stationary availability.

Matrix Notations :

� For any k; n 2 N�, In is the n� n identity matrix, �0k;n is the k � n matrix of zeros:

� b and � are the m � m matrices such that bi;j = Pi
�
X1
Ui
= j
�
and �i;j = Pi

�
X1
T� = j

�
for any

i; j 2 f1; :::;mg. The matrix b is subdivised as follows :

b =

�
�bp;p �bp;m�p

�bm�p;p �bm�p;m�p

�
.

� One may check that 1 is not an eigenvalue of �bp;p so that we may introduce the matrix B such that

B =

 �
Ip � �bp;p

��1 �0p;m�p

�bm�p;p
�
Ip � �bp;p

��1
Im�p

!
.

� E (M�) =

0BBBB@
�0p;1

E (Mp+1)
E (Mp+2)

:
E (Mm)

1CCCCA, E (R�) =
0BB@

E (R1)
E (R2)
:

E (Rm)

1CCA, E� (T ) =
0BB@

E1 (T )
E2 (T )
:

Em (T )

1CCA, E� (R) =
0BB@

E1 (R)
E2 (R)
:

Em (R)

1CCA,
where Ei is the expectation with respect to the conditional distribution Pi (:) = Pi

�
:=X1

0 = i
�
. If

we look after the cycles of the unmaintained system that begin with the re-startings of the system
after a repair, Ei (T ) is the mean duration of the up-period which takes place at the beginning of
a cycle that starts in state i, when Ei (R) is the mean duration of the repair which takes place at
the end of the same cycle. (One may check that E� (R) = �E (R�)).

2 Computation of the Stationary Availability

Let D1 be the stationary availability of the maintained system. Let us recall that :

D1 = lim
t!+1

mX
k=1

P (Xt = k) , whenever it exists.

Theorem 1 The stationary availability of the maintained system exists and is

D1 =
1

1 + d1
with d1 =

DMRB
�
(Im � b)�E (R�) + bE (M�)

�
DMRB (Im � b)E� (T )

(1)

and
DMR = [DMB (Im � b) �1m]DR + [1�DRB (Im � b) �1m]DM .

Remark 1 All the terms of d1 may easily be computed from the data. Indeed, if A1 is the generative
matrix of the Markov process

�
X1
t

�
and A is the matrix A1 truncated at order m, one may check that

� = �A�1diag(A1 (1;m+ 1), A1 (2;m+ 1), :::, A1 (m;m+ 1)), and that E� (T ) = �A�1�1m. Moreover,
bi;j =

R +1
0

Pt (i; j) �i (dt) and the computation of the Pt (i; j) have already been much studied in the
literature (cf [1] e.g.).



3 A Su¢ cient Condition for the Preventive Maintenance Policy
to Improve the Stationary Availability

Let Dini
1 be the stationary availability of the initial (i.e. unmaintained) system (Dini

1 = 1
1+dini1

with

dini1 = DR:E�(R)
DR:E�(T )

). For k 2 fp+ 1; :::;mg, let Dk be the kth row of Im.
For any probability vector D on f1; :::;mg, let Dini

1 (D) be the stationary availability of the initial
system if new starts of the initial system after a repair are controlled by D instead of DR.
We show that, if new starts after a maintenance action (controlled by DM ) are �at least as good�as

after a repair
�
Dini
1 (DM ) � Dini

1
�
, and if new starts after a repair are �better�than new starts in state

k for any k 2 fp + 1; :::;mg,
�
Dini
1 � Dini

1 (Dk)
�
, then, if the maintenance actions are not too long in

average, the maintenance policy improves the stationary availability.

Theorem 2 Let us assume that

� Dini
1 (DM ) � Dini

1 ,

� Dini
1 � Dini

1 (Dk), for any k 2 fp+ 1; :::;mg.

Then, if E (Mk) � Ek (R)� dini1 :Ek (T ), for any k 2 fp+ 1; :::;mg, we have D1 � Dini
1 .

4 Optimisation of the Preventive Maintenance Policy Under
Speci�c Assumptions

Our problem is here to see whether there is a preventive maintenance policy that makes the stationary
availability maximal. As far as the durations of the maintenance actions are concerned, it is easy to
see on (1) that the stationary availability depends on them only through their means and that, as
expected, the stationary availability is decreasing with each E (Mi), for any i 2 fp + 1; :::;mg. The real
problem is to study the in�uence of the distributions of the inter-inspection intervals �1, �2, ..., �m on the
stationary availability. We deal here with this problem under speci�c assumptions under which we show
that the optimization study may be restricted to the preventive maintenance policies with deterministic
inter-inspection intervals.
To indicate the dependence on the distributions �1, �2, ..., �m, D1 and d1 are now respectively

denoted by D1 (�1; �2; :::; �m) and d1 (�1; �2; :::; �m).
We assume here that the system starts again in the same way after a maintenance action as after

a repair (DM = DR). Moreover, if the states 1 to p correspond to some increasing degradation of the
system, we assume that the system may only go worse as long as it is in f1; :::; pg (the generative matrix
of the Markov process

�
X1
t

�
truncated at order p, say �Ap;p, is upper triangular).

Theorem 3 Under these assumptions (DM = DR and �Ap;p upper triangular) :
1�)
�
There exist some distributions �01; �

0
2; :::; �

0
m such that D1

�
�01; �

0
2; :::; �

0
m

�
> Dini

1
�

(H)
m�

There exist c01, c
0
2, ..., c

0
m > 0 such that D1

�
�0c1 ; �

0
c2 ; :::; �

0
cm

�
> Dini

1
�

(H 0)

2�) Under the assumption (H) or (H 0), there exist copt1 , copt2 , ..., coptm such that

D1

�
�copt1

; �copt2
; :::; �coptm

�
� D1 (�1; �2; :::; �m) , for any distributions �1; �2; :::; �m.

5 An Example

The initial system is a �k out of n system�. It is composed with n identical components with constant
failure rate � and repair rate �. The system is up if and only if k components are working. For
i 2 f1; :::; ng, let i be the state where exactly i � 1 components are down. There are m = n � k + 1
up-states. The repairs and the maintenance actions are assumed to put the system back to the new state
(i.e. state �1�), so that we have DM = DR = (1; 0:::; 0).
Note that the assumption ��Ap;p upper triangular�of theorem 3 is not true.



We take k = 2, � = 1, � = 2, E (Rm) = m
10 (the system may only go down from state m) and

E (Mj) =
j
100 , for any j 2 fp+ 1; :::;mg.

We �rst check the advisability of our preventive maintenance policy with the help of theorem 2. As
the other assumptions are true, we only have to compare E (Mk) to xk = Ek (R) � dini1 :Ek (T ) for any
k 2 f2; :::n�1g (cf table 1). Then, we compute the optimal distributions for the inter-inspection intervals.
As we cannot consider all the possible distributions, we assume that they are GAMMA distributions. We
use the optimisation tools of MATLAB to �nd the best parameters of those GAMMA distributions and we
�nd that those parameters correspond to very small standard deviations so that the best inter-inspection
intervals are deterministic. Table 2 gives the stationary availability of the initial system

�
Dini
1
�
and the

optimal stationary availability of the maintained system (D1) for p 2 f1; :::; n� 2g.

n k=2 k=3 k=4 k=5 k=6 k=7 k=8

3
xk 0.0571

E(Mk) 0.02

4
xk 0.0333 0.1000

E(Mk) 0.02 0.03

5
xk 0.0188 0.0518 0.1271

E(Mk) 0.02 0.03 0.04

6
xk 0.0101 0.0262 0.0573 0.1398

E(Mk) 0.02 0.03 0.04 0.05

7
xk 0.0051 0.0126 0.0258 0.0544 0.1424

E(Mk) 0.02 0.03 0.04 0.05 0.06

8
xk 0.0024 0.0058 0.0113 0.0217 0.0474 0.1392

E(Mk) 0.02 0.03 0.04 0.05 0.06 0.07

9
xk 0.0011 0.0026 0.0048 0.0087 0.0168 0.0396 0.1341

E(Mk) 0.02 0.03 0.04 0.05 0.06 0.07 0.08
table 1

n Dini1 p=1 p=2 p=3 p=4 p=5 p=6 p=7
3 0.8537 0.9434
4 0.8824 0.9326 0.9615
5 0.9140 0.9372 0.9515 0.9712
6 0.9431 0.9470 0.9519 0.9627 0.9789
7 0.9658 Dini1 Dini1 Dini1 0.9703 0.9853
8 0.9812 Dini1 Dini1 Dini1 Dini1 Dini1 0.9904
9 0.9903 Dini1 Dini1 Dini1 Dini1 Dini1 Dini1 0.9942

table 2

This example allows us to conclude that, as expected, theorem 2 provides us with a su¢ cient but
not necessary condition for the maintenance policy to improve the stationary availablity (see n = 6, p = 1
e.g.). Though, we can see that it gives a rather good numerical bound for the maximal mean durations of
the maintenance actions.
Though the assumptions of theorem 3 are not true for this example, the results are still valid and

it is su¢ cient to study the deterministic maintenance policies to optimize the stationary availability.
Actually, we have checked the same property on a few other examples, so that we may conjecture that
the results of theorem 3 are always true : it seems to be always su¢ cient to restrict the study to the
deterministic inter-inspection intervals to optimize the stationary availability.
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