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Summary

We consider a repairable system such that different completeness degrees are possible for the repair (or corrective maintenance), that go
from a 'minimal' up to a 'complete' repair. Our problem then is to find the optimal degree for the repair, namely such that the long-run
availability is optimal. The system evolves in time according to a Markov process with a finite state space as long as it is running, whereas
duration of repairs follow general distributions. After repair, the system starts again in an up-state i with the probability d(i). This distribution d
is called the "restarting distribution". Amazingly, we observe on an example that the optimal restarting distribution may be random, which
highly complicates both of its research and achievement. Sufficient conditions under which this optimal restarting distribution is non random
are then given. The optimal restarting distribution is provided for two classical structures in reliability (k-out-of-n structures and standby
structures), as well as the optimal number of redundant components to be set up in such structures in case of complete repairs.

Résumé

Nous considérons un système réparable, pouvant être réparé de manière plus ou moins complète lorsqu'il tombe en panne. Notre problème
est alors de trouver le degré optimal de réparation, le critère utilisé étant la disponibilité asymptotique. Tant qu'il est en marche, le système
évolue selon un processus markovien à espace d'états fini, les durées de réparations suivant en revanche des lois générales. A l'issue d'une
réparation, le système redémarre dans un état de marche i avec la probabilité d(i). Nous disposons ainsi d'une "loi de redémarrage" d. De
façon étonnante, nous observons sur un exemple que la loi optimale de redémarrage peut être aléatoire, ce qui en complique notablement à
la fois la recherche et la réalisation. Nous donnons alors des conditions suffisantes pour qu'elle soit au contraire déterministe. A titre
d'illustration, nous étudions deux structures classiques en fiabilité (structures de type k-sur-n et à redondance passive) pour lesquelles nous
déterminons la loi optimale de redémarrage ainsi que le nombre optimal de composants à installer dans le système dans le cas où les
réparations sont complètes.

Introdu ction

Let us consider a repairable system such that different
completeness degrees are possible for the repair (or corrective
maintenance), that go from a 'minimal' up to a 'complete' repair.
One may think for instance of a system with redundant
components. Our questions are: in case of failure, is it worth
achieving complete repairs, that may be long (or costly), or is it
better to repair the system as quickly as possible ? To which
extent should the corrective maintenance be performed ? The
answer to such questions highly depends on the criterion used to
measure the performance of the system: we are interested here in
the long-run availability, that is the probability for the system to be
up in the long run. Our problem then is to find the degree of the
repair such that the long-run availability is optimal. In [3], we
already studied such kinds of problems but we concentrated there
on finding conditions under which complete repairs are optimal.
Namely, we showed that for a system with some kind of aging
property, complete repairs are optimal. As for other papers about
maintenance optimization, most of them actually deal with
preventive maintenance, only a few with corrective maintenance.
Nearest problems from ours may be found in papers dealing with
redundancy optimization. One may think for instance to [1], to
Chapter 6 of [2], or to [9] and references therein. In such papers,
the authors are mainly interested in optimizing reliability under
constraints or under the assumption of two failure modes. Their
aim is to provide algorithms for finding optimal redundancy. The
closest work from ours we found is [7] where the authors consider
a system composed of N identical parallel units, for which they
show (among other results) that even in the case of units with
constant failure rate, cost may be improved by deliberately taking
out of operation some non-failed units. The question then arises to
find the optimal number of units to be put into operation (or to

repair in case of failure), which they compute under different
assumptions.

Here, we do not fix the structure of the system as the previous
authors did, but we assume that the system evolves in time
according to a Markov process as long as it is running. When the
system fails, a repair is begun with a general distribution. After
repair, we assume that the system always starts again in the
same way. More precisely, if the up-states of the system are
denoted by 1, 2, ..., m, the system starts again after any repair in
state i (1 �� i ��P) with the same probability, denoted by d(i). This
means that we allow the new starts after repair to be random. As
for the technical realization of such a thing, let us think for
instance of a system composed of two parallel sub-systems with
two repairmen facilities. In case of failure, the repair of both sub-
systems is begun simultaneously. Then, we may decide to let the
system start again as soon as one is over. Also, we may adjust
the new start of the system according to the desired restarting
distribution by adding some repairmen facilities for one of the sub-
systems.

For such a system (see next section for more details) we compute
the long-run availability A� (see Theorem 1) and then comes our
problem, namely to look for the restarting distribution dopt that
makes the long-run availability optimal. We first observe from a
numerical example that this optimal distribution does not always
correspond to a new start in a fixed up-state and may be random.
This justifies the introduction of a random distribution for the new
starts after repair. Though, we also observe that the optimal
distribution often is non random. A natural problem then is to look
for conditions under which the optimization may be limited to such
non random distributions. Indeed, from a practical point of view, it
is easier to know exactly which components to repair in case of



failure. Besides, from a theoretical point of view, the research of
the optimal restarting distribution is, under such conditions, highly
simplified. Indeed, there are, in that case, only m possible
restarting distributions, whereas all the possible distributions on
{1,...,m} have to be considered in the general case. Such sufficient
conditions are given in Theorem 2. They are tested on some
examples, and then used to study 'k-out-of-n' and standby
structures: for both of them, we show that the optimal restarting
distribution is non random and corresponds to an optimal number
of components to be repaired in case of failure, which we
compute. This easily provides us with the optimal number of
redundant components to be set up in those structures, in case of
complete repairs.

The proofs of the different results of this presentation may be
found in [4]. Also, one may find in [3] some sufficient conditions for
complete repair to be optimal, which are not exposed here.

We now specify our assumptions and notations.

Assumptions - Notations

The system evolves in a finite state space, composed of m up-
states (1, 2, ..., m) and p down-states (m+1, ..., m+p). We assume
that the system starts from an up-state and then evolves in time
according to a Markov process up to its first failure. (Typically, we
are thinking about a system formed of components with constant
failure rates). This system almost surely breaks down after a finite
time: Pri( T<+��� ��IRU�HYHU\� i in {1,...,m}, where T is the first up-
period of the system and Pri is the conditional probability given
that the system started in state i. (The associated conditional
expectation is denoted by Ei ). The system evolves according to
the same Markov process after any repair. The repair of the
system begins as soon as it breaks down and has a random
duration that is independent of the previous evolution of the
system. If the system is in the down-state m+k (1��k ��p), and if
the system starts again in the up-state i after repair, then the
repair has the same (general) distribution as a random variable
Rm+k,i, with a finite mean E(Rm+k,i). Let R be the p�m matrix of the
E(Rm+k,i)'s. After any repair, the system starts again in an up-state
that is assumed to be independent of the previous evolution of the
system (and consequently, on the down-state by the time of the
repair). Then, d(i) is the probability for the system to start again
from state i ( 1 �� i ��m) after any repair and d = d(1, 2, …, m) is
the so-called restarting distribution (after repair), see Figure 1.

We denote by (Xt)t�� the Markov process that describes the
evolution of the system up to its first failure:

(The down-states of the system are made absorbing).

Let A be the (infinitesimal) generator of the Markov process (Xt),
namely A is the matrix formed by the constant transition rates of

(Xt) between the different states. The matrix A is subdivided as
follows:

where A1 = (ai,j) 1�L,j�P (matrix of the transition rates between up-

states), A2 = (ai,j) 1�L�P�P���M�P�S (matrix of the failure rates) and mp,0

(resp. pp,0 ) is the pXm (resp. pXp) matrix of zeros.

Let G be the mXm matrix such that ( )∫
+∞

=
0

, , dtjiPG tji  where

( ) ( )jXjiP tit == Pr, , for any 1 ��i,j ��P, t ����
Then, jiG ,  represents the time spent in state j when the system

starts from state i.

We recall that 1
1
−= AG  (see [8] Theorem 4.25 for instance).

Finally, symbol (Zt)t�� represents the process that describes the
evolution of the system, with no truncation at time T. Also, for n in

N*, symbols n1  and n0  respectively represent the nX1 column
vectors filled with ones and zeros.

Computation o f the Long -run Availabili ty

According to our assumptions on the way the system starts again
after repair and on the markovian evolution of the running system,
it is clear that the later evolution of the system after a new start
following a repair only depends on the up-state in which the
system starts again and is independent of the past. Also, the
successive states visited by the process (Zt)t���at each new start
form a Markov chain. Consequently, the process (Zt)t��� � is what is
called in literature a semi-regenerative process, with d as
stationary distribution. For 1 ��i ��m, symbols MUTi and MDTi now
respectively represent the Mean Up Time and the Mean Down
Time on a cycle of the semi-regenerative process (Zt)t�� that starts
in state i. Also, MUTi and MDTi respectively represent the mean
time to failure and the mean duration of the first repair when the
system starts from the up-state i. We use the following matricial
notations:

Using general theorems from the Markov renewal theory, it is now
easy to derive the following result (see [4] for details), where the

numerator and the denominator of a�(d) respectively represent
the Mean Up Time and the Mean Down Time of the system during
a cycle of the semi-regenerative process (Zt)t��.

Figure 1. Schematic evolution of the system
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Theorem 1. The long-run availability of the system exists and is

with

where td is the transposed column vector of d.

A First Example

We now give a first example for which we look for the optimal
distribution d.
For 1 �� i ��m, /i represents the Dirac measure at i and d = /i

corresponds to a new start in state i.

We consider a system formed of three components A, B and C,
ZLWK�UHVSHFWLYH�FRQVWDQW�IDLOXUH�UDWHV�� A��� B�DQG�� C. Component
A has a constant repair rate µA. Component A and the sub-
system constituted with components B and C in series are in
standby redundancy (see Figure 2): at the beginning, component
A is active and the subsystem is waiting. When component A
fails, the sub-system is activated. Component B starts with
probability 1 - �B. Component C always starts.

Figure 2. Structure of the system. Example 1.

We denote by 1 the perfect working state: 1=A(BC)w (A is active,

B and C are waiting) and 2 the second up-state: 2= A BC (A is
down, B and C are active).

There are two down-states: 3= A B C (A and B are down, C is

up) and 4= A B C  (A and C are down, B is up), which may both
lead to both up-states by repair.
We get:

We take � A = 3, � B = 1, � C = 15, �B = 0.3 and µA = 20.
As for the repair, let us note that R3,1, R3,2, R4,1 and R4,2

respectively correspond to the repair of components A and B, of
B, of A and C, of C. Besides, in the following examples, the repair
of A is assumed to be quicker when the system is down than
when it is up.
We take d = [a,1-a] with a in [0,1] and we plot the long-run

availability A� with respect to a for different values of the mean
repair lengths.

Case 1. We first assume that the mean repair of each component
is 0.01 when the system is down, and that the different repairs
may be undertaken simultaneously. Then we have:

and the long-run availability with respect to a is plotted in Figure
3.

Here, A�(d) is optimal for d� �>���@� �/1 with A�(�/1) § 0.9830.

Case 2. We now make the same assumptions apart from the fact
that A and B may not be repaired simultaneously any more. Then
we have

And the long-run availability with respect to a is plotted in Figure
4.

+HUH��WKH�RSWLPDO�ORQJ�UXQ�DYDLODELOLW\� LV�UHDFKHG�QHLWKHU�ZLWK�/1,

QRU�ZLWK�/2. We get: A�(�/1) § 0.9721, A�(�/2) § 0.9743, dopt §
[0.73,0.27], A�(dopt ) § 0.9746.

Case 3. Finally, assume A and B may be repaired
simultaneously, but not A and C. The mean duration for the
repairs of A, B and C respectively are 0.015, 0.015, 0.01.

Then we have :

The long-run availability with respect to a is plotted in Figure 5.

Here, A� (d) is optimal for dopt = /2, A�(�/2) §�0.9678.

We observe from this example that the optimal restarting
distribution dopt may not always be chosen among the Dirac
distributions (see the second case). There are however cases
where it is possible (see the first and third cases, where the
RSWLPDO� GLVWULEXWLRQV� UHVSHFWLYHO\� DUH� /1 DQG� /2). We now give
some conditions under which it is possible to limit the research
for the optimal distribution among the Dirac ones.

Figure 3. The long-run availability with respect to a, case 1.

Figure 4. The long-run availability with respect to a, case 2.
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Figure 5. The long-run availability with respect to a, case 3.

Restriction o f the Search for the Optimal
Restarting Distribution to Dirac Distributions

Let us first note that, with some argument of continuity over a
compact set, there clearly exists an optimal distribution dopt

(among all the possible restarting distributions) that makes the
long-run availability optimal. Also, among the m different new
starts in a fixed up-state i (which corresponds to dopt = /i), one of
them, say /io, is better than the others, in the sense that A�( /i ) �
A�( /io ) for any 1 �� i ��m. We now give conditions for /io to be
optimal among all the possible restarting distributions d and not
only among Dirac distributions.

Theorem 2. Let (H1) and (H2) be the following assumptions:
(H1) For any fixed k such that 2 ��N���S��(��Rm+k,i ) - E( Rm+k-1,i ) is
independent of i for 1 ��i ��P�
(H2) For any fixed k such that 2 ��N���S�
(E( Rm+k,i ) - E( Rm+k-1,i ))1�L�P and ))),)((( 12 mi

p

kl

liGA ≤≤
=
∑  are

monotone with respect to i, in opposite directions.
Then, under (H1) OR (H2), there is a non random restarting
distribution optimal among all the possible restarting distributions.
Namely: if io ( 1 ��io ��P��LV�VXFK�WKDW�A�( /io) = max1 ��io ��P A�( /i

), we then have A�( d )� A�( /io) for any distribution d on {1,...,m}.

(The proof may be found in [4]).

We now indicate a few situations in which assumption (H1)
clearly is true, so that we may see clearer when the previous
result may be applied.

Assumption (H1) is clearly true in the following situations:
- There is one single down state or, more generally, the

duration of the repair is independent of m+k and i. This will
happen for instance if the repairman has to be called in
case of failure and if the duration of the repair itself is
negligible relative to the waiting time for the repairman to
arrive.

- The duration of the repair is independent of the down state
at the time of the repair (i.e. E( Rm+k,i ) - E( Rm+k-1,i ) for any
1�� i ��m, 2 �� k �� p). This is true, for instance, when the
repairs of the components necessary to the good working of
the system are short relative to the others.

- The duration of the repair is independent of the state of the
system after repair (i.e. E( Rm+k,i ) = E( Rm+k,i+1 ) for any 1 ��i
��m-1, 1 ��k ��p). This is true, for instance, when the repairs
of the components necessary to the good working of the
system are long relative to the others.

- There is only one single repairman facility so that the
duration of the repair is the addition of the duration of the
repairs of the different components.

As for the meaning of assumption (H2), we may note that if the
up-states are ranked according to their increasing degradation

degree, ))),)((( 12 mi

p

kl

liGA ≤≤
=
∑  often is increasing. Indeed, this

property means that, if the system starts from state i, the first

visited down-state is stochastically smaller than if the system
starts from state i+1 and may be understood as some kind of
ageing property (see [3] for details). This is often true. Then, the
most restrictive part of (H2) is the assumption on the duration of
repairs.

Let us now check the conditions given by Theorem 2 on Example
1 given in the previous section, and on a new example.

Back to Example 1

Condition 2 ��k ��p here reduces to k = 2 and we have

Then, we are in the case where ))),)((( 12 mi

p

kl
liGA ≤≤

=
∑  increases

with i.

In the first case, (E( Rm+k,i ) - E( Rm+k-1,i ))1�i�m is independent of i,
so that (H1) is true. The optimal distribution is non random: dopt =
/1.

In the second case, (E( Rm+k,i ) - E( Rm+k-1,i ))1�i�m increases with i,
so that neither (H1) nor (H2) is true. The optimal distribution is
random: dopt §�[0.73,0.27].

In the third and last case, (E( Rm+k,i ) - E( Rm+k-1,i ))1�i�m decreases
with i and (H2) is true. The optimal distribution is non random dopt

= /2.

Example 2

We consider a system formed of three components A, B and C,
with respective constant failure rates � A, � B and � C. These
components cannot be repaired when the system is active.
Component A and the subsystem composed with components B
and C in parallel are in series (see Figure 6). The failure of
component A brings about the failure of components B and C as
well.

Figure 6. Structure of the system. Example 2.

Using the same notations as for Example 1, let 1 = ABC, 2 =

AB C  and 3 = A B C be the up-states, and 4 = A B C  and 5 =

A B C  be the down-states. Both down states may lead by
repair to the three up-states (m = 3).
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Case 1. Components B and C may be repaired simultaneously,
or components A and C, but not components A and B. The mean
repair-time for each component A, B and C is 0.005. We get :

and (E( R5,i ) - E( R4,i ))1�i�m decreases with i.

We take � A =1.8, � B =0.05 and � C = 1.85 and we get :

Then ))),)((( 12 mi

p

kl
liGA ≤≤

=
∑  decreases with i and (H2) is false.

We take d = [a,b,1-a-b] (with a �����E������a+b �����DQG�WKH�ORQJ�
run availability is plotted with respect to a and b in Figure 7.

Figure 7. The long-run availability with respect to a and b, case 1.

The long-run availability is optimal for dopt §� [0.4202,0,0.5798]

and A�(dopt ) § 0.9836. Moreover, A�(�/1) §�A�(�/2) §�A�(�/3) §
0.9821.
Here, /1, /2 and /3 correspond to minima of A�: any random
restarting distribution is better than a deterministic one!

Case 2. Components A and B may be repaired simultaneously,
but not components B and C, or components A and C. The mean
repair-times for components A, B and C respectively are 0.02,
0.02 and 0.001. We get :

and (E( R5,i ) - E( R4,i ))1�L�P increases with i.

We take � A =5, � B =1 and � C =4 and we get :

and ))),)((( 12 mi

p

kl
liGA ≤≤

=
∑  decreases with i. Then, (H2) is true.

Here again, we take d = [a,b,1-a-b] and the long-run availability is
plotted with respect to a and b in Figure 8.
The long-run availability is optimal for dopt = /3 and A�(� /1) §
0.8944, A�(�/2) §� 0.8929, A�(�/3) §�0.9017.

Figure 8. The long-run availability with respect to a and b, case 2.

Two Class ical Structures in Reliabili ty

We here consider two classical structures in reliability. In both
cases, the system is composed of n identical and independent
FRPSRQHQWV�ZLWK�FRQVWDQW�IDLOXUH�UDWH���!��
The first structure is what is called a 'k-out-of-n' one: the system
is up if and only if at least k components are up ( 1 ��N���Q).

In the second structure, the components are in standby
redundancy: one single component is active at a time, the
redundant units are standing by as spares and used successively
for replacement. When activated, a component starts
VXFFHVVIXOO\�ZLWK�SUREDELOLW\�������ZLWK�����������
For both structures, no repair may be performed as long as the
system is active. In case of failure, a repairman is called. The
mean waiting time until his arrival is c, the mean duration for the
repair of one component is r (c, r � 0).

We first look for the optimal restarting distribution. As there is, in
both cases, one single down-state, we may apply Theorem 2, so
that we only have to search among Dirac distributions. Once we
have determined this optimal restarting distribution (or,
equivalently, the optimal number of components to be up after
repair), we easily derive the optimal number of components to be
set up in the system, with c, r����DQG�k (respectively c, r����DQG��)
fixed in the first (respectively second) case, in case of complete
repairs.

Case of a 'k-out-of-n' structure

Let i be the state where exactly i - 1 components are failed ( 1 ��i
��n). There are here m = n - k + 1 up-states. The single down-
state (m + 1 = n - k + 2)  corresponds to n - k + 1 failed
components.
According to the assumptions concerning the repair (see the
introduction of this section), we get:

( )rkincRE im 2)( ,1 +−−+=+ , where n - i - k + 2 is the number of

components to repair ( 1 ��i � m = n - k + 1).

We get the following results:

Proposition 3.
1. For k and n fixed ( 1 ��N���Q���

a. If r=0 or n = k, the best is to repair every component.

b. If 0≠r and n > k:
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Table 1. Optimal number of components n0 according to c, case k = 5, r = 0.1.

- If c/r �� ��N�� WKH� EHVW� LV� WR� UHSDLU� RQH� VLQJOH
component.

- If ∑ −

= 





−≥ 1

1
n

kj j

n

r

c
 : the best is to repair

every component.

- If ∑ −

= 





−<< 1

1
1 n

kj j

n

r

c

k
 : the optimal

restarting distribution is 
0i

δ  (2 ��L0 ��P�����ZKLFK
means that we have to repair n - i0 - k + 2
components, where i0 is the unique integer such
that

(i0  independent of ��
2. For k fixed, let n0 be the optimal number of components

tobe  set up. We get:
a. If r=0: then n0 = � (we have to set up as many

components as possible).

b. If r 0≠r :
- If c=0: then n0 =k and redundant components

*are prejudicial to the long-run availability.

- If c 0≠r  0: then n0 is the unique integer
such that

(n0 ��N��LQGHSHQGHQW�RQ��).

A specific case : For a 5 out of n system and for r = 0.1, the
optimal number of components to set up in case of complete
repair is given in Table 1 according to the value of c.

Case of n compon ents in standby redund ancy
Let i be the state where exactly i -1 components have failed ( 1 �
i ��n). There are m = n up-states. The system is down when all
the n components are failed ( m+1= n+1).
According to the assumptions concerning the repair, we have:

( )rincRE im −++=+ 1)( ,1  for any 1 ��i ��n.

We get:

Proposition 4.
1. For n fixed:

- If r <((1 - ������F��LQGHSHQGHQW�FRQGLWLRQ�RQ�� and
on n): the best is to repair every component.

- If r ����� ��������F�� WKH�EHVW� LV� WR� UHSDLU� RQH�VLQJOH
component.

2. We can derive:
- If r <((1 - ���� ��F�� ZH� KDYH� WR� VHW� XS� DV� PDQ\

components as possible.
- If r �������������F�� WKH�EHVW� LV�WR�VHW�XS�RQH�VLQJOH

component and redundant components are
prejudicial to the long-run availability.
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! j�k

n"i0 n"i0�1
j " 1 t c

r t ! j�k

n"i0�1 n"i0�2
j " 1 t

! j�k

n0"1 n0

j " 1 t c
r � ! j�k

n0 n0�1
j " 1 t
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t

c 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

n0 14 14 15 15 16 16 16 17 17 18 18 18 19 19 19
t




