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ABSTRACT: This article deals with the preventive maintenance optimization of a two-components system
used at the SNCF (French National Railway Society). Both components have two failure modes and the system
functioning mode makes the components dependent. This system is presently submitted to a periodic preventive
maintenance policy. The aim of this paper is to study the eventual benefits provided by some adjustments on
this periodic policy. By a preventive maintenance action, failed components are presently renewed and working
components are adjusted. A slight modification of a first-order Arithmetic Reduction of Age (ARA1) model is
used to describe the components adjustments, together with Bertholon distributions for the intrinsic components
life-times. Maximum likelihood estimates are computed for the model parameters. A Piecewise Deterministic
Markov Process is used to model the system behavior both under the present preventive maintenance policy
and under the adjusted ones. Several reliability indicators are finally numerically assessed and optimized for the
different maintenance policies, which allows to better see their advantages and drawbacks.

1 INTRODUCTION

For a railway infrastructure like SNCF (French Na-
tional Railway Society), maintenance of the infras-
tructure is a major task because a failure causes delays
and client dissatisfaction. Moreover, failures increase
maintenance cost. The SNCF has hence initiated re-
search in order to model the involved systems, in
view of some improvement in their preventive mainte-
nance. This article deals with a two-components sys-
tem. The two components are functionally dependent.
Those systems are used by the SNCF in great number
and we want to optimize their maintenance given that
they have already worked for a while. The nature of
the system is not revealed because of confidentiality
issue.

To ensure the proper functioning of the system,
a preventive maintenance action is annually under-
taken. During a preventive maintenance action, the
SNCF agent replaces the broken components if any
and adjusts the working components. In order to

model the adjustments effect on the two components,
we use a virtual age model: the adjustments effective-
ness is modelled by an ARA1 (first-order Arithmetic
Reduction of Age) model (Doyen and Gaudoin 2004).
Intrinsic failure rate is of Weibull type. We introduce
a modification of the ARA1 model using a Bertholon
type intrinsic failure rate (Bertholon 2001). This new
model is called first-order Arithmetic Reduction of
Age with Bertholon Adaptation (ARABA1).

Because of the components aging, usual Markov
jump processes with finite state space cannot be used.
Consequently, in order to model the system, Piece-
wise Deterministic Markov Processes (PDMP) are
used. Those processes are described in (Davis 1984).
Their numerical assessment is often established by
Monte Carlo simulations (Zhang et al. 2008); how-
ever this method usually takes too much time to opti-
mize maintenance. An alternate method is here used:
the quantities of interest can be expressed using the
PDMP marginal distributions, which are known to



be solutions of a set of partial differential equations
called Chapman-Kolmogorov equations. A finite vol-
ume scheme, which is an explicit version of the al-
gorithm presented in (Eymard et al. 2008) in a sim-
plified framework, provides numerical estimates for
the PDMP marginal distributions, as solution of this
scheme.

This paper is organized as follows: in Section 2,
the two-components system is presented. In Section 3,
the models used to estimate the components life-time
(Weibull and Bertholon) and the maintenance effect
(ARA1 and ARABA1) are presented as well as the
estimation results. In Section 4, we present the PDMP
used to model the maintained system. In Section 5,
a new preventive maintenance strategy with preven-
tive renewal of components is presented and modelled
with PDMPs. The associated cost functions are pro-
vided, with respect of the PDMPs marginal distribu-
tions. An optimal maintenance strategy which mini-
mizes the cost function is determined. Conclusive re-
marks end this paper in Section 6.

2 THE TWO-COMPONENTS SYSTEM

2.1 System presentation

The system has two components, A and B, which are
functionally dependent. Both of them can fail in two
failure modes denoted by F1 and F2. When a com-
ponent fails in failure mode F1 and the other one
is still working, the system works fine. Conversely,
when a component fails in failure mode F2, the sys-
tem does not work anymore regardless of the other
component status. Such a failure leads to a corrective
maintenance action; broken components are instantly
replaced by new ones. When the two components fail
in failure mode F1 one after the other, not only the
system no longer works but it creates an undesirable
event as well. A corrective maintenance action is un-
dertaken and the components are instantly replaced by
new ones. The system failures can be classified into
two categories, the first being a classic failure and the
other a more severe failure. The two of them will be
quantified.

2.2 Preventive maintenance strategy

A system failure leads to a corrective maintenance ac-
tion. In order to avoid the undesirable event, the sys-
tem is also preventively maintained. A SNCF agent
is sent to the system each year. During a preven-
tive maintenance action, the agent replaces the bro-
ken components if any and adjusts the working com-
ponents.

Both corrective and preventive maintenance actions
are considered as instantaneous because the duration
of a maintenance action is negligible compared to the
life-time of components.
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Figure 1: Markov graph of PDMP discrete states

Figure 1 represents possible transitions between
system states with 1 for up and 0 for down. System
does not stay in state (0,0) because corrective main-
tenance actions are instantaneous.

In order to quantify the effect of the preventive
maintenance actions on the components life-time, a
virtual age model is used. It is presented in next sec-
tion.

3 COMPONENTS LIFE-TIME AND
MAINTENANCE EFFECT MODELLING

3.1 Model presentation

(Doyen and Gaudoin 2004) propose Arithmetic Re-
duction of Age (ARA) models in order to quantify
maintenance actions effect on a component life-time.
The principle of such models is to introduce a virtual
age for a system under maintenance, which is reduced
at each maintenance time. A first-order ARA model
is here used (ARA1), which reduces the components
virtual age at each maintenance time by a fraction ρ
of the elapsed time since the last maintenance action.
Parameter ρ measures the maintenance efficiency. Let
λθ(t) be the component intrinsic failure rate (failure
rate of the unmaintained component) with θ the in-
trinsic failure rate parameters.

An ARA1 model is defined by its failure intensity :

λARA1
t = λθ

(
t− ρTNt−

)
(1)

with Ti the ith maintenance action time and Nt− the
number of maintenance actions occurred before time
t. The ρ coefficient models maintenance effect and
ρ ∈ [0,1]. Depending on the values of ρ, we have dif-
ferent maintenance effects:

• ρ = 1: As Good As New (AGAN),

• ρ = 0: As Bad As Old (ABAO),

• ρ ∈ ]0; 1[: maintenance is effective,

• ρ < 0: maintenance is damaging.



Let us consider our case of application. ARA1

model is used to quantify the effect of the preven-
tive maintenance actions on the components life-time.
A data base providing information on corrective and
preventive maintenance actions of n components is at
our disposal, we set for i ∈ {1, · · · , n}:

• ti: minimum between life-time of component i
and censoring time,

• δi: nature of data ti. If ti is a life-time δi = 1, if
ti is a censoring time δi = 0,

• T ik: time of the kth preventive maintenance action
undertaken on component i which occurs every
year,

• Nt−i
: number of preventive maintenance actions

occurred on component i before ti.

The ARA1 likelihood function is, see (Doyen and
Gaudoin 2004):

L

(
ti, δi, T

i
1, · · · , T iN

t−
i

, i ∈ {1, · · · , n}, θ, ρ
)

=

n∏
i=1

[
λθ

(
ti − ρT iN

t−
i

)]δi

exp

−N
t−
i
−1∑

k=0

(∫ T i
k+1

T i
k

λθ
(
t− ρT ik

)
dt

)

exp

−∫ ti

T i
N
t−
i

λθ

(
t− ρT iN

t−
i

)
dt

 (2)

First, the intrinsic failure rate is supposed to be of
the Weibull type. The Weibull failure rate is:

λθ(t) =
β

η

(
t

η

)β−1
(3)

with θ = (η,β). The ARA1 model failure intensity
associated with Weibull distribution is:

λARA1
t =

β

η

(
t− ρTNt−

η

)β−1
(4)

Components failure intensity associated with ARA1

model and Weibull hypothesis does not fit with the
non-parametric failure rate, see Figures 2 and 3. Non-
parametric failure rate does not seem to start at zero
and seem to be constant during the first years of
functioning. This phenomenon can be modeled with
Bertholon distribution.

We now suppose that the intrinsic failure rate is of
the Bertholon type. The Bertholon distribution mod-
els a constant failure rate until time t0 and an increas-
ing failure rate after. The first part corresponds to an
Exponential distribution and the second part corre-
sponds to the minimum between an Exponential dis-
tribution and a Weibull distribution. The Bertholon
failure rate is :

λθ(t) =
1

η0
+
β

η

(
(t− t0)+

η

)β−1
(5)

with θ = (η0, t0, η, β). In order to model a preven-
tive maintenance action efficiency for a Bertholon in-
trinsic failure rate, we choose to modify the ARA1

model. A maintenance action occurred before time
t0 is supposed to have no effect on the component
life-time. The effect is only modelled after time t0.
This assumption is justified by the fact that before
t0, failures are assumed to be accidental and main-
tenance action cannot prevent them. This new model
is called first-order Arithmetic Reduction of Age
with Bertholon AdaptationARABA1. TheARABA1

model failure intensity is expressed by the following:

λARABA1
t =

1

η0
+
β

η

(
(t− t0)+ − ρ

(
TNt−

− t0
)+

η

)β−1

(6)

In order to estimate the model parameters, we use
the Maximum Likelihood Estimation (MLE) method.
The likelihood function is maximized with a Simu-
lated Annealing algorithm.

3.2 Results

Results are confidential so legends are hidden. Fig-
ures 2 and 3 represent components A and B fail-
ure rates estimated with different methods : non-
parametric method (Kaplan-Meier),ARA1 associated
with Weibull distribution and ARABA1. We can ob-
serve that in the two cases, failure rates estimated
withARABA1 are closer to non-parametric estimates
than failure rate estimated with ARA1 associated
with Weibull distribution. In the following, we con-
sequently use ARABA1 results.

Using these results, we model the maintained sys-
tem with a PDMP. The model is presented in next sec-
tion.

4 SYSTEM MODELLING

4.1 Piecewise Deterministic Markov Processes

PDMPs have been introduced by Davis in 1984 in
(Davis 1984). This type of modeling has been used
by Devooght (Devooght 1997) for nuclear issues. A
PDMP is a hybrid process (It,Xt)t≥0. The first com-
ponent It is discrete, with values in a finite state space



0 2 4 6 8 10 12 14

0.
05

0.
10

0.
15

0.
20

FNP[, 1]

F
N

P
[, 

2]

Running Time

Fa
ilu

re
 R

at
e

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

Non−parametric
95% Confidence Interval
ARABA1
ARA1 Weibull

Figure 2: Component A failure rate
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Figure 3: Component B failure rate

E. Typically, it indicates the state - up or down - for
each component of the system at time t. The second
component Xt, with values in a Borel subset G ⊂ Rd,
stands for environmental conditions, in our case, the
components entry into service dates and the time t;
the time unit is year. This means that a PDMP can
model a system with aging components. The two parts
It and Xt interact one with each other: the process
jumps at countably many isolated random times; by
a jump from (It− ,Xt−) = (i, x) to (It,Xt) = (j, y)
(with (i, x), (j, y) ∈ E × G), the transition rate be-
tween the discrete states i and j depends on the en-
vironmental condition x just before the jump, and is
a function x→ a(i, j, x). Similarly, the environmental
conditionXt just after the jump, is distributed accord-
ing to some distribution µ(i,j,x)(dy), which depends
on both components just before the jump (i, x) and on
the after jump discrete state j. So the transition kernel
which governs the transition between (i, x) and (j, y)
is:

b((i, x), (j, dy)) = a(i, j, x)µ(i,j,x)(dy) (7)

Between jumps, the discrete component It is con-
stant and the evolution of the environmental condition
Xt is deterministic, solution of a set of differential
equations which depends on the fixed discrete state:
given that It = i between two jumps, Xt is solution of

dy

dt
= v(i, y) (8)

In order to model a PDMP jump occurring at a de-
terministic time, an after-jump distribution may be
defined and is denoted by q((i, x), (j, dy)) with x =
(x1, x2, · · · , xd−1, k) and k a deterministic jump time.
In our case such a distribution models a preventive
maintenance action which periodically occurs every
year so k ∈ N∗.

The two-components maintained system can be
modelled with a PDMP with state space E =
{(1,1), (1,0), (0,1)} (1 for up and 0 for down). The
state (0,0) is never reached because maintenance ac-
tions are instantaneous, so that the system runs con-
tinuously. Components failure rates depend on their
age so the environmental variable have to contain this
information. Be xA the date of entry into service of
component A and xB the date of entry into service of
component B, the PDMP environmental variable is
(xA, xB, t) so the space dimension d is 3. Let T be the
time horizon and G = [0, T ]3. Between two jumps,
only environmental variable t evolves at speed 1 so
that we have, for all i ∈ E:

v(i, (xA, xB, t)) = (0,0,1) (9)

In order to identify each component failure mode,
we define the probabilities pAFi

and pBFi
with i ∈ {1,2},

where pAFi
(respectively pBFi

) is the probability that
component A (respectively component B) fails in
mode Fi given that it fails. We have for C ∈ {A,B}

pCF1
+ pCF2

= 1 (10)

Let (ηC0 , t
C
0 , η

C , βC) be Bertholon coefficients and
ρC maintenance effect coefficient of component C
with C ∈ {A,B}. At time t, maintained components
A and B failure rates are, with C ∈ {A,B}:

aC(xC , t) =
1

ηC0
+

βC

ηC

(
(t− xC − tC0 )+ − ρC

(
[t]− xc − tC0

)+
ηC

)βC−1

(11)

with [t], the integer part of t, which corresponds to
the last preventive maintenance action date occurred
before t. Maintenance actions occur every year in the
beginning of the year, so when t ∈ N∗.

When the two components are working, failure of
component A in mode F1 does not cause the system
to crash. The failure is not detected so component A
is not replaced. PDMP jumps from state (1,1) to state
(0,1). The PDMP transition kernel is:

b (((1,1) , (xA, xB, t)) , ((0,1) , (dyA, dyB, ds))) =

pAF1
· aA (xA, t) δxA,xB ,t (dyA, dyB, ds) (12)



In the same way, after componentB failure in mode
F1, the system is still working and the failure is not
detected. The PDMP transition kernel is:

b (((1,1) , (xA, xB, t)) , ((1,0) , (dyA, dyB, ds))) =

pBF1
· aB (xB, t) δxA,xB ,t (dyA, dyB, ds) (13)

When component A (respectively component B)
fails in mode F2 while component B (respectively
component A) is working, the system immediately
stops working and the failed component is replaced
by a new one. PDMP stays in state (1,1), the transi-
tion kernel is:

b (((1,1) , (xA, xB, t)) , ((1,1) , (dyA, dyB, ds))) =

pAF2
· aA (xA, t) δt,xB ,t (dyA, dyB, ds)

+ pBF2
· aB (xB, t) δxA,t,t (dyA, dyB, ds) (14)

When component A is down in mode F1, a failure
of component B leads to a system crash regardless of
its failure mode. The two components are replaced by
new ones. The PDMP transition kernel is

b (((0,1) , (xA, xB, t)) , ((1,1) , (dyA, dyB, ds))) =

aB (xB, t) δt,t,t (dyA, dyB, ds) (15)

It is the same if component A fails while compo-
nent B is already down in mode F1:

b (((1,0) , (xA, xB, t)) , ((1,1) , (dyA, dyB, ds))) =

aA (xA, t) δt,t,t (dyA, dyB, ds) (16)

Addingly, during a preventive maintenance action,
failed components are replaced by new ones. A pre-
ventive maintenance action is undertaken in the be-
ginning of the year which means that when t ∈
{1,2, · · · , [T ]}. So we define PDMP transition ker-
nels which model replacement of broken components
during a preventive maintenance action, for all k ∈
{1,2, · · · , [T ]}:

q (((1,1) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

δxA,xB ,k (dyA, dyB, ds) (17)

q (((0,1) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

δk,xB ,k (dyA, dyB, ds) (18)

q (((1,0) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

δxA,k,k (dyA, dyB, ds) (19)

In order to initialize the PDMP, we define the initial
law π0(·, dx) as the empirical law of entry into service
dates of the systems presently working (t = 0). We
suppose that all systems are in state (1,1).

4.2 PDMP quantification with a finite volume
algorithm

Using the fact that a PDMP is a Markov process
(with general state space), the associated Chapman-
Kolmogorov equation may be written, see (Eymard
et al. 2008). This equation represents some bal-
ance in terms of probability flows, which takes
into account both of the deterministic evolution be-
tween jumps (which evolves with speed v(i, x))
and the jumps (governed by a(i, j, x)µ(i,j,x)(dy)
and q((i, x), (j, dy))). Finite volume (FV) methods
are then known to be well adapted for their nu-
merical resolution. They estimate an approxima-
tion of the PDMP marginal distributions denoted
by (πt(·, dx))t≥0. Their principle is based on the
discretization of both time and environmental state
spaces into cells. The mesh of environmental state
space is denoted byM. A cell K of meshM is writ-
ten as K = K1 ×K2 ×K3 where K1, K2 and K3 are
three intervals. The time evolution of the probability
masses in each cell of the environmental state space
is followed (time) step by step and at each step, some
balance is written between the out- and in-coming
probability masses. This brings us to solve a linear
system. This method allows us to estimate associated
quantities to a maintenance strategy such as mean cost
or mean number of failures.

Let h ∈ R∗+ be the environmental state space
step and δt ∈ R∗+ the time step. The FV algorithm
that we propose here computes an approximation
P h,δt
t (i, x)dx of πt(i, dx) which admits a density
P h,δt
t (i, x) with respect of Lebesgue measure, con-

stant on each time step and on each cell K of the en-
vironmental state space.

P h,δt
t (i, x) := un(i,K) (20)

with t ∈ [n · δt; (n+ 1) · δt[.
The discrete transition rate between the cells (i,K)

and (j,L) is:

ai,jK,L =
1

hd

∫
K

a (i, j, x)

∫
L

µ(i,j,x) (dy)dx (21)

The discrete exit rate from the cell (i,K) is:

biK =
∑
j∈E

∑
L∈M

ai,jK,L (22)

Let K = K1 ×K2 ×K3 be a cell. If it exists k ∈
{1,2, · · · , [T ]} such as k ∈ K3, the discrete transition
rate between the cells (i,K) and (j,L) caused by a
deterministic jump is:

qi,jK,L(n) =
1

hd

∫
K

∫
L

q((i, x), (j, dy))dx (23)



with n such as k ∈ [n · δt; (n+ 1) · δt[
If it does not exist k ∈ {1,2, · · · , [T ]} such as k ∈

K3 then:

qi,iK,K(n) = 1 and qi,jK,L(n) = 0 ∀(i,K) 6= (j,L) (24)

If K = K1 ×K2 ×K3 and L = L1 × L2 × L3 are
two neighboring cells of mesh M such as K1 = L1

and K2 = L2 then we set:

• viK,L = 1 if for all c ∈ K3 and d ∈ L3, d > c,

• viK,L = −1 if for all c ∈ K3 and d ∈ L3, d < c.

In all other cases, we set viK,L = 0.
The FV algorithm is first initialized by:

u0 (i,K) =
1

hd

∫
K

π0 (i, dx) (25)

In our case, the FV algorithm writes as follows:

ũn (i,K) = un (i,K)

− δt

(∑
L∈NK

1

h
1viK,L>0 + biK

)
un (i,K)

+ δt
∑
L∈NK

1

h
1viK,L<0un (i,L)

+ δt
∑
j∈E

∑
L∈M

aj,iL,Kun (j,L) (26)

un+1 (i,K) =
∑
j∈E

∑
L∈M

qj,iL,K(n)ũn (j,L) (27)

A sufficient condition for this algorithm to be sta-
ble is that the coefficient of un (i,K) is non negative,
which may be written:

1− δt

(∑
L∈NK

1

h
1viK,L>0 + biK

)
≥ 0 (28)

This methodology has already been used to opti-
mize the maintenance of a track circuit (Lair et al.
2009) and of an air conditioning system used in
regional train (Lair et al. 2010).

5 MAINTENANCE OPTIMIZATION

5.1 A new maintenance strategy with preventive
renewal of components

In addition of the preventive maintenance strategy
already applied, we propose to replace components
based on their age during a preventive maintenance

action. If a component is older than an age called
’limit age’, it is replaced. To optimize the system
maintenance, the components limit ages that mini-
mize the maintenance mean cost should be found. Let
rA be the component A limit age, and rB be the com-
ponent B limit age. This new maintenance strategy
causes a change for the PDMP transition kernels as-
sociated to a preventive maintenance action; for all
k ∈ {1,2, · · · , [T ]}:

q (((1,1) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

(1k−xA<rAδxA (dyA) + 1k−xA≥rAδk (dyA))

· (1k−xB<rBδxB (dyB) + 1k−xB≥rBδk (dyB))

· δk (ds) (29)

q (((0,1) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

δk (dyA) · (1k−xB<rBδxB (dyB) + 1k−xB≥rBδk (dyB))

· δk (ds) (30)

q (((1,0) , (xA, xB, k)) , ((1,1) , (dyA, dyB, ds))) =

(1k−xA<rAδxA (dyA) + 1k−xA≥rAδk (dyA)) · δk (dyB)

· δk (ds) (31)

We also estimate the impact of doubling the main-
tenance step on failures number, undesirable event
number and maintenance cost.

5.2 Cost function

In this article, an optimal maintenance strategy min-
imizes the maintenance mean cost over T years. The
cost function is defined as follows. We consider that
a classical failure and the undesirable event are two
different events. Let’s introduce some notations:

• CA : component A replacement cost,

• CB : component B replacement cost,

• Cun : undesirable event cost,

• Cf : classical failure cost,

• Cpm : preventive maintenance cost,

• Nun(t) : mean number of undesirable events on
[0; t],

• N f
A,B(t) : mean number of failures with replace-

ment of components A and B on [0; t],



• N f
A(t) : mean number of failures with replace-

ment of component A only on [0; t],

• N f
B(t) : mean number of failures with replace-

ment of component B only on [0; t],

• Npm
A (t) : mean number of component A replace-

ments during a preventive maintenance action on
[0; t],

• Npm
B (t) : mean number of component B replace-

ments during a preventive maintenance action on
[0; t],

• Npm(t) : number of preventive maintenance ac-
tions on [0; t],

The cost function is given by the following:

C(t) = Nun(t) · (CA +CB +Cun)

+N f
A,B(t) · (CA +CB +Cf )

+N f
A(t) · (CA +Cf ) +N f

B(t) · (CB +Cf )

+Npm
A (t) ·CA +Npm

B (t) ·CB

+Npm(t) ·Cpm (32)

The involved quantities may be expressed in terms
of the PDMP marginal distribution. For example, the
mean number of undesirable event occurred before
time t, Nun(t) may be assessed as follows:

Nun(t) =∫ t

0

∫
[0,T ]3

pF1aA(xA, r)πs((1,0), dxA, dxB, dr)ds

+

∫ t

0

∫
[0,T ]3

pF1aB(xB, r)πs((0,1), dxA, dxB, dr)ds

(33)

Thanks to a simulated annealing algorithm, we
are able to find components limit ages which mini-
mize cost function with a preventive maintenance step
given. Two different preventive maintenance steps are
tested : one year (the current one) and two years.
Higher values are not tested because they are not al-
lowed by SNCF maintenance rules. The results are
given in next section.

5.3 Results

Table 1 and Figures 4, 5 and 6 represent comparison
between indicators of the current maintenance strat-
egy and three others which are:

Table 1: System cumulative mean quantities over T years for the
three maintenance strategies compared to the current one

Preventive maintenance step 1 2 2
Components renewal yes no yes

Cost −16% −0.2% −17%
Undesirable events −42% +200% +66%
Classical failures −31% −0.5% −31%

1. Periodic preventive maintenance with step equal
to one (PMS=1) and preventive replacement of
components,

2. Periodic preventive maintenance with step equal
to two (PMS=2) without preventive replacement
of components,

3. Periodic preventive maintenance with step equal
to two (PMS=2) and preventive replacement of
components.

Let Z be an indicator associated to the current strat-
egy, and Z the same indicator but associated to an-
other strategy. Let ∆Z be a comparison coefficient
such as:

∆Z =

(
Z

Z
− 1

)
· 100 (34)

We compare three indicators: mean maintenance cost,
mean number of undesirable events and mean num-
ber of failures. These indicators are estimated for each
year of operation (Figures 4, 5 and 6) and are summed
over time T (Table 1).

From an economical perspective, the best main-
tenance strategy corresponds to a maintenance step
equal to two and with components renewal, it leads to
a cost decrease of −17%. However this strategy leads
an increase of the undesirable events number (+66%).
Because of that, such strategy can not be applied.
Maintenance strategy which corresponds to a mainte-
nance step equal to one and with components renewal
leads to a decrease of all quantities (cost−16%, num-
ber of undesirable events −42% and number of fail-
ures−31%). Such a strategy is a good choice and may
be applied. It is interesting to note that doubling the
PMS leads to an 200% increase of the mean num-
ber of undesirable events but does not increase the
mean maintenance cost. This is because an undesir-
able event is very rare.

In Figure 4, we can observe that doubling the pre-
ventive maintenance step does not involve a mean cost
decrease. Renewal of componentsA andB leads to an
investment the first period and periodically.

The only strategy which decreases the mean num-
ber of undesirable events corresponds to the strategy
with a maintenance step equal to one and with renewal
of components, see Figure 5.

All tested strategies with components renewal de-
crease the mean number of failures, see Figure 6.
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Figure 4: Mean system maintenance cost for the three mainte-
nance strategies compared to the current one

−
50

0
50

10
0

15
0

20
0

x

R
f_

po
ur

c[
1:

20
, 2

]

Time

∆N
un

 (
%

)

PMS=1 with replacement
PMS=2
PMS=2 with replacement

Figure 5: Mean number of system undesirable events for the
three different maintenance strategies compared to the current
one (Nun : number of undesirable events)
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Figure 6: Mean number of system failures for the three different
maintenance strategies compared to the current one (Nf : num-
ber of failures)

6 CONCLUSIONS

Thanks to an ARABA1 (Arithmetic Reduction of
Age with Bertholon Adaptation of order one) model,
we have been able to estimate adjustments effect
on components life-time jointly with intrinsic fail-
ure rate. This model is a modification of the ARA1

model. It appears that it fits better with our data
than an ARA1 model with Weibull intrinsic failure
rate. By taking into account the components life-time
distributions, the adjustments effect and the preven-
tive maintenance strategy, we modelled the system
with a PDMP. Finite volume method quickly gives us
searched quantities which allowed us to test different
maintenance strategies. Thus, we found a new pre-
ventive maintenance strategy based on components
preventive replacement which not only minimizes the
maintenance mean cost but reduces both mean num-
ber of undesirable events and mean number of failures
as well.

REFERENCES

Bertholon, H. (2001). Une modélidation du vieillissement.
Ph. D. thesis, Université Joseph Fourier.
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